A Comprehensive Review of Banana Fiber-Reinforced Composites

Properties, Processing and Applications

Authors

  • Shresht Singh Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
  • Nithesh Naik Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
  • Nilakshman Sooriyaperakasam Department of Mechanical Engineering, University of Moratuwa, Colombo, Sri Lanka 10400
  • Tejas Iyer Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
  • Chirag Agarwal Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
  • Jeswanthi Tirupathi Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
  • Mahmood Al Abdali Department of Mechanical and Industrial Engineering, Sultan Qaboos University, P.O. Box 34, Al-Khod, Muscat, Sultanate of Oman 123

DOI:

https://doi.org/10.57159/gadl.jcmm.1.2.22011

Keywords:

Banana fiber-reinforced composites, Mechanical properties, Thermal properties, Processing techniques, Sustainable applications

Abstract

Banana fiber-reinforced composites are a promising area of research due to their sustainable and renewable nature and physical and mechanical properties. This comprehensive review article analyzed the physical structure, chemical composition, and mechanical properties of banana fibers and the processing methods and challenges associated with their use. The review also covers the different variants of banana fiber-reinforced composites, including their thermal and mechanical properties, current and future applications, and the implications for researchers, engineers, and manufacturers interested in exploring the potential of these materials. The study found that the mechanical properties of banana fiber composites depend on various factors, such as fiber length, diameter, and loading, as well as the type of matrix used. However, more research is needed to understand the full potential of banana fiber-reinforced composites and to address challenges such as the inconsistent quality of fibers and the lack of standardization in processing methods. Despite these challenges, the review highlights the potential for these composites to play an important role in sustainable and eco-friendly construction and manufacturing applications.

References

D. Rajak, D. Pagar, R. Kumar, and C. Pruncu, Recent progress of reinforcement materials: a comprehensive overview of composite materials, “Journal of Materials Research and Technology,” 8 (6), pp. 6354–6374, 2019, doi: https://doi.org/10.1016/j.jmrt.2019.09.068.

N. Naik, N. Sooriyaperakasam, Y. Abeykoon, Y. Wijayarathna, G. Pranesh, S. Roy, R. Negi, B. Aakif, A. Kulatunga, and J. Kandasamy, Sustainable green composites: a review of mechanical characterization, morphological studies, chemical treatments, and their processing methods, “Journal of Computers, Mechanical and Management,” 1 (1), pp. 66–81, 2022, doi: https://doi.org/10.57159/gadl.jcmm.1.1.22014.

S. H. Kamarudin, M. Basri, M. Rayung, F. Abu, S. Ahmad, M. Norizan, S. Osman, N. Sarifuddin, M. Desa, U. Abdullah, I. Tawakkal, and L. Abdullah, A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications, “Polymers,” 14 (17), p. 3698, 2022, doi: https://doi.org/10.3390/polym14173698.

K. Senthilkumar, I. Siva, N. Rajini, J. Winowlin Jappes, and S. Siengchin, Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application, in Sustainable Composites for Aerospace Applications, Elsevier, 2018, pp. 35–53. doi: https://doi.org/10.1016/B978-0-08-102131-6.00003-7.

N. Chand and M. Fahim, Natural fibers and their composites, in Tribology of Natural Fiber Polymer Composites, Elsevier, 2021, pp. 1–59. doi: https://doi.org/10.1016/b978-0-12-818983-2.00001-3.

E. Dempsey, Banana fiber: the material for sustainable fashion from tree waste?, Utopia, May 2022. https://utopia.org/guide/banana-fiber-the-material-for-sustainable-fashion-from-tree-waste/ (accessed Jul. 24, 2022).

N. Reddy and Y. Yang, Fibers from banana pseudo-stems, in Innovative Biofibers from Renewable Resources, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 25–27. doi: https://doi.org/10.1007/978-3-662-45136-6_7.

A. Subagyo and A. Chafidz, Banana pseudo-stem fiber: preparation, characteristics, and applications, “Banana Nutrition - Function and Processing Kinetics,” 2020, doi: https://doi.org/10.5772/intechopen.82204.

M. Muralikrishna, T. Surya Kumari, R. Gopi, and G. Babu Loganathan, Development of mechanical properties in banana fiber composite, “Materials Today: Proceedings,” 22, pp. 541–545, 2020, doi: https://doi.org/10.1016/j.matpr.2019.08.189.

K. M. Babu, Eco-friendly green fibre-reinforced composites to combat global warming, 2018.

M. Alam, S. Sapuan, H. Ya, P. Hussain, M. Azeem, and R. Ilyas, Application of biocomposites in automotive components: A review, in Biocomposite and Synthetic Composites for Automotive Applications, Elsevier, 2021, pp. 1–17. doi: https://doi.org/10.1016/B978-0-12-820559-4.00001-8.

M. Kiron, Banana fiber: properties, manufacturing process and applications., Textile Learner, 2021. https://textilelearner.net/banana-fiber-properties-manufacturing/ (accessed Mar. 15, 2022).

N. Venkateshwaran and A. Elayaperumal, Banana fiber reinforced polymer composites - a review, “Journal of Reinforced Plastics and Composites,” 29 (15), pp. 2387–2396, 2010, doi: https://doi.org/10.1177/0731684409360578.

P. Pandit, Characteristics & properties of banana fibers, in Text Value Chain, 2020.

T. Nguyen and T. Nguyen, Banana fiber-reinforced epoxy composites: mechanical properties and fire retardancy, “International Journal of Chemical Engineering,” 2021, pp. 1–9, 2021, doi: https://doi.org/10.1155/2021/1973644.

B. Laxshaman Rao, Y. Makode, A. Tiwari, O. Dubey, S. Sharma, and V. Mishra, Review on properties of banana fiber reinforced polymer composites, “Materials Today: Proceedings,” 47, pp. 2825–2829, 2021, doi: https://doi.org/10.1016/j.matpr.2021.03.558.

P. Fabbri and M. Messori, Surface modification of polymers, in modification of polymer properties, Elsevier, 2017, pp. 109–130. doi: https://doi.org/10.1016/B978-0-323-44353-1.00005-1.

M. Asim, M. Jawaid, N. Saba, Ramengmawii, M. Nasir, and M. T. H. Sultan, Processing of hybrid polymer composites—a review, in Hybrid Polymer Composite Materials, Elsevier, 2017, pp. 1–22. doi: https://doi.org/10.1016/B978-0-08-100789-1.00001-0.

C. Prabhakar, K. Anand Babu, P. Kataraki, and S. Reddy, A review on natural fibers and mechanical properties of banyan and banana fibers composites, “Materials Today: Proceedings,” 54, pp. 348–358, 2022, doi: https://doi.org/10.1016/j.matpr.2021.09.300.

C. Vigneswaran, V. Pavithra, V. Gayathri, and K. Mythili, Banana Fiber: Scope and value added product development, “Journal of Textile and Apparel, Technology and Management,” 9 (2), 2015.

S. Paramasivam, D. Panneerselvam, D. Sundaram, K. Shiva, and U. Subbaraya, Extraction, characterization and enzymatic degumming of banana fiber, “Journal of Natural Fibers,” 19 (4), pp. 1333–1342, 2022, doi: https://doi.org/10.1080/15440478.2020.1764456.

T. Rohan, B. Tushar, and G. Mahesha, Review of natural fiber composites, “IOP Conference Series: Materials Science and Engineering,” 314 (1), 2018, doi: https://doi.org/10.1088/1757-899X/314/1/012020.

P. Sivaranjana and V. Arumugaprabu, A brief review on mechanical and thermal properties of banana fiber based hybrid composites, “SN Applied Sciences,” 3 (2), 2021, doi: https://doi.org/10.1007/s42452-021-04216-0.

A. Orhon and M. Altin, Utilization of alternative building materials for sustainable construction, “Green Energy and Technology,” pp. 727–750, 2020, doi: https://doi.org/10.1007/978-3-030-20637-6_36.

S. Islam, S. Islam, and M. Hasan, Natural fiber reinforced polymer composites as sustainable green composites, “Encyclopedia of Materials: Plastics and Polymers,” pp. 987–996, 2022, doi: https://doi.org/10.1016/b978-0-12-820352-1.00257-1.

V. Srivastava, S. Singh, and D. Das, Biodegradable fibre-based composites as alternative materials for sustainable packaging design, “Smart Innovation, Systems and Technologies,” 262 SIST, pp. 87–98, 2022, doi: https://doi.org/10.1007/978-981-16-6128-0_9.

A. Pappu, V. Patil, S. Jain, A. Mahindrakar, R. Haque, and V. Thakur, Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review, “International Journal of Biological Macromolecules,” 79, pp. 449–458, 2015, doi: https://doi.org/10.1016/j.ijbiomac.2015.05.013.

T. Lai, E. Jayamani, and K. Soon, Comparative study on thermogravimetric analysis of banana fibers treated with chemicals, “Materials Today: Proceedings,” 2022, doi: https://doi.org/10.1016/j.matpr.2022.10.267.

A. Parre, B. Karthikeyan, A. Balaji, and R. Udhayasankar, Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber, “Materials Today: Proceedings,” 22, pp. 347–352, 2020, doi: https://doi.org/10.1016/j.matpr.2019.06.655.

N. Bekraoui, Z. El Qoubaa, H. Chouiyakh, M. Faqir, and E. Essadiqi, Banana fiber extraction and surface characterization of hybrid banana reinforced composite, “Journal of Natural Fibers,” 19 (16), pp. 12982–12995, 2022, doi: https://doi.org/10.1080/15440478.2022.2080789.

A. Ramdhonee and P. Jeetah, Production of wrapping paper from banana fibres, “Journal of Environmental Chemical Engineering,” 5 (5), pp. 4298–4306, 2017, doi: https://doi.org/10.1016/j.jece.2017.08.011.

D. Kumar and P. Mohanraj, Review on natural fiber in various pretreatment conditions for preparing perfect fiber, “Asian Journal of Applied Science and Technology (AJAST),” 1 (2), pp. 66–78, 2017.

K. Kumar and A. Sekaran, Some natural fibers used in polymer composites and their extraction processes: A review, “Journal of Reinforced Plastics and Composites,” 33 (20), pp. 1879–1892, 2014, doi: https://doi.org/10.1177/0731684414548612.

C. McCarty and M. McQuaid, Structure and surface:contemporary Japanese textiles, New York: Museum of Modern Art, 1998.

E. Rossol, The viability of banana fiber-based textiles in the fashion industry, “OhioLINK Electronic Theses and Dissertations Center,” 2019.

J. Kordhanyamath and S. Bai, Speciality of banana yarn on ilkal handloom sarees woven with murgi motif, “International Journal on Textile Engineering and Processes,” 5 (2), pp. 28–35, 2019.

N. Poonia, N. Arya, and Pooja, Banana fiber: A review, “International Journal of Education & Management Studies,” 10 (2), pp. 144–146, 2020.

A. Kicińska-Jakubowska, E. Bogacz, and M. Zimniewska, Review of natural fibers. part I—vegetable fibers, “Journal of Natural Fibers,” 9 (3), pp. 150–167, 2012, doi: https://doi.org/10.1080/15440478.2012.703370.

K. Rao and K. Rao, Extraction and tensile properties of natural fibers: Vakka, date and bamboo, “Composite Structures,” 77 (2007), pp. 288–295, 2007.

W. Zhu, B. Tobias, R. Coutts, and G. Langfors, Air-cured banana-fibre-reinforced cement composites, “Cement and Concrete Composites,” 16 (1), pp. 3–8, 1994, doi: https://doi.org/10.1016/0958-9465(94)90024-8.

H. Savastano, P. Warden, and R. Coutts, Potential of alternative fibre cements as building materials for developing areas, “Cement and Concrete Composites,” 25 (6), pp. 585–592, 2003, doi: https://doi.org/10.1016/S0958-9465(02)00071-9.

R. Coutts, A review of Australian research into natural fibre cement composites, “Cement and Concrete Composites,” 27 (5), pp. 518–526, 2005, doi: https://doi.org/10.1016/j.cemconcomp.2004.09.003.

A. Kulkarni, K. Satyanarayana, P. Rohatgi, and K. Vijayan, Mechanical properties of banana fibres (Musa sepientum), “Journal of Materials Science,” 18 (8), pp. 2290–2296, 1983, doi: https://doi.org/10.1007/BF00541832.

N. Jústiz-Smith, G. Virgo, and V. Buchanan, Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials, “Materials Characterization,” 59 (9), pp. 1273–1278, 2008, doi: https://doi.org/10.1016/j.matchar.2007.10.011.

N. M. Nurazzi, M. Asyraf, A. Khalina, N. Abdullah, H. Aisyah, S. Rafiqah, F. Sabaruddin, S. Kamarudin, M. Norrrahim, R. Ilyas, and S. Sapuan, A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications, “Polymers,” 13 (4), p. 646, 2021, doi: https://doi.org/10.3390/polym13040646.

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review, “Cellulose,” 17 (3), pp. 459–494, 2010, doi: https://doi.org/10.1007/s10570-010-9405-y.

H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L. Geonzon, R. Bacabac, and J. Klein-Nulend., Cellulose and its derivatives: towards biomedical applications, “Cellulose,” 28 (4), pp. 1893–1931, 2021, doi: https://doi.org/10.1007/s10570-020-03674-w.

S. Kalia, A. Dufresne, B. Cherian, B. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, Cellulose-based bio-and nanocomposites: a review, “International Journal of Polymer Science”, 2011, doi: https://doi.org/10.1155/2011/837875.

J. George, M. S. Sreekala, and S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites, “Polymer Engineering & Science,” 41 (9), pp. 1471–1485, 2001, doi: https://doi.org/10.1002/pen.10846.

H. Ng , L. Sin, T. Tee, S. Bee, D. Hui, C. Low, A. Rahmat., Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers, “Composites Part B: Engineering,” 75, pp. 176–200, 2015, doi: https://doi.org/10.1016/j.compositesb.2015.01.008.

O. Shoseyov, Z. Shani, and I. Levy, Carbohydrate binding modules: biochemical properties and novel applications, “Microbiology and Molecular Biology Reviews,” 70 (2), pp. 283–295, 2006, doi: https://doi.org/10.1128/MMBR.00028-05.

C. Wyman, S. Decker, M. Himmel, J. Brady, C. Skopec, and L. Viikari, Hydrolysis of cellulose and hemicellulose, in polysaccharides, CRC Press, 2004. doi: https://doi.org/10.1201/9781420030822.ch43.

J. Ahmad and Z. Zhou, Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review, “construction and building materials,” 333, p. 127353, 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.127353.

A. Nair and R. Joseph, Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements, in Chemistry, Manufacture and Applications of Natural Rubber, Elsevier, 2014, pp. 249–283. doi: https://doi.org/10.1533/9780857096913.2.249.

B. S. Kaith, H. Mittal, R. Jindal, M. Maiti, and S. Kalia, Environment benevolent biodegradable polymers: synthesis, biodegradability, and applications, “Cellulose Fibers: Bio- and Nano-Polymer Composites,” pp. 425–451, 2011, doi: https://doi.org/10.1007/978-3-642-17370-7_16.

L. Yan, B. Kasal, and L. Huang, A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering, “Composites Part B: Engineering,” 92, pp. 94–132, 2016, doi: https://doi.org/10.1016/j.compositesb.2016.02.002.

F. Unal, O. Avinc, and A. Yavas, Production of sustainable banana fibers from agricultural wastes and their properties, 2022, pp. 157–193. doi: https://doi.org/10.1007/978-981-19-0878-1_7.

Ebisike K. , B. AttahDaniel, B. Babatope, and S. Olusunle., Studies on the extraction of naturally-occurring banana fibers, “The International Journal of Engineering and Science,” 2 (9), pp. 95–99, 2013.

E. Abraham B. Deepa, L. Pothen, J. Cintil, S. Thomas, M. John, R. Anandjiwala, S. Narine, Environmental friendly method for the extraction of coir fibre and isolation of nanofibre, “Carbohydrate Polymers,” 92 (2), pp. 1477–1483, 2013, doi: https://doi.org/10.1016/j.carbpol.2012.10.056.

S. Smole, S. Hribernik, S. Kleinschek, and T. Kreze, Plant fibres for textile and technical applications, 2. 2018.

N. Reddy and Y. Yang, Biofibers from agricultural byproducts for industrial applications, “Trends in Biotechnology,” 23 (1), pp. 22–27, 2005, doi: https://doi.org/10.1016/j.tibtech.2004.11.002.

V. Geethamma, R. Joseph, and S. Thomas, Short coir fiber‐reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment, “Journal of Applied Polymer Science,” 55 (4), pp. 583–594, 1995, doi: https://doi.org/10.1002/app.1995.070550405.

S. S. Murugan, Mechanical properties of materials: definition, testing and application, “International Journal of Modern Studies in Mechanical Engineering (IJMSME),” 6 (2), pp. 28–38, 2020, [Online]. Available: http://doi.org/10.20431/2454-9711.0602003

H. A. Al-Qureshi, The use of banana fibre reinforced composites for the development of a truck body, “Second International Wood and Natural Fibre Composites Symposium, Kassel/Germany,” pp. 1–8, 1999.

S. Trimula, H. Madanaraj, A. Kaw, G. Besterfield, and J. Ye, Effect of extrinsic and intrinsic factors on an indentation test, “International Journal of Solids and Structures,” 33 (24), pp. 3497–3516, 1996, doi: https://doi.org/10.1016/0020-7683(95)00198-0.

V. Arthanarieswaran, A. Kumaravel, and M. Kathirselvam, Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization, “Materials & Design,” 64, pp. 194–202, 2014, doi: https://doi.org/10.1016/j.matdes.2014.07.058.

R. Bhatnagar, G. Gupta, and S. Yadav, A review on composition and properties of banana fibers, “International Journal of Scientific & Engineering Research,” (January), pp. 49–52, 2015.

O. Faruk, A. Bledzki, H. Fink, and M. Sain, Progress report on natural fiber reinforced composites, “Macromolecular Materials and Engineering,” 299 (1), pp. 9–26, 2014, doi: https://doi.org/10.1002/mame.201300008.

S. Kalia, B. S. Kaith, and I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review, “Polymer Engineering & Science,” 49 (7), pp. 1253–1272, 2009, doi: https://doi.org/10.1002/pen.21328.

B. Cherian, L. Pothan, T. Nguyen-Chung, G. Mennig, M. Kottaisamy, and S. Thomas, A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization, “Journal of Agricultural and Food Chemistry,” 56 (14), pp. 5617–5627, 2008, doi: https://doi.org/10.1021/jf8003674.

B. Deepa, E. Abraham, B. Cherian, A. Bismarck, J. Blaker, L. Pothan, A. Leao, S. De Souza, and M. Kottaisamy., Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion, “Bioresource Technology,” 102 (2), pp. 1988–1997, 2011, doi: https://doi.org/10.1016/j.biortech.2010.09.030.

W. Jordan and P. Chester, Improving the properties of banana fiber reinforced polymeric composites by treating the fibers, “Procedia Engineering,” 200, pp. 283–289, 2017, doi: https://doi.org/10.1016/j.proeng.2017.07.040.

S. Sapuan, A. Leenie, M. Harimi, and Y. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites, “Materials & Design,” 27 (8), pp. 689–693, 2006, doi: https://doi.org/10.1016/j.matdes.2004.12.016.

M. Maleque, F. Belal, and S. Sapuan, Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite, “Arabian Journal for Science and Engineering,” 32 (2 B), pp. 359–364, 2007.

E. Zainudin, S. Sapuan, K. Abdan, and M. Mohamad, Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites, “Materials & Design,” 30 (3), pp. 557–562, 2009, doi: https://doi.org/10.1016/j.matdes.2008.05.060.

S. Annie Paul, A. Boudenne, L. Ibos, Y. Candau, K. Joseph, and S. Thomas, Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials, “Composites Part A: Applied Science and Manufacturing,” 39 (9), pp. 1582–1588, 2008, doi: https://doi.org/10.1016/j.compositesa.2008.06.004.

Y. Habibi, W. El-Zawawy, M. Ibrahim, and A. Dufresne, Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues, “Composites Science and Technology,” 68 (7–8), pp. 1877–1885, 2008, doi: https://doi.org/10.1016/j.compscitech.2008.01.008.

N. Saba, P. Tahir, and M. Jawaid, A review on potentiality of nano filler/natural fiber filled polymer hybrid composites, “Polymers,” 6 (8), pp. 2247–2273, 2014, doi: https://doi.org/10.3390/polym6082247.

S. Yu, S. Yang, and M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites, “Polymer,” 50 (3), pp. 945–952, 2009, doi: https://doi.org/10.1016/j.polymer.2008.11.054.

P. Mukheijee and K. Satyanarayana, Structure and properties of some vegetable fibers, “Journal of Materials Science,” 21, pp. 51–56, 1986.

A. Haneefa, P. Bindu, I. Aravind, and S. Thomas, Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites, “Journal of Composite Materials,” 42 (15), pp. 1471–1489, 2008, doi: https://doi.org/10.1177/0021998308092194.

M. Idicula, A. Boudenne, L. Umadevi, L. Ibos, Y. Candau, and S. Thomas, Thermophysical properties of natural fibre reinforced polyester composites, “Composites Science and Technology,” 66 (15), pp. 2719–2725, 2006, doi: https://doi.org/10.1016/j.compscitech.2006.03.007.

C. Kiran, G. Ramachandra Reddy, B. Dabade, and S. Rajesham, Tensile properties of sun hemp, banana and sisal fiber reinforced polyester composites, “Journal of Reinforced Plastics and Composites,” 26 (10), pp. 1043–1050, 2007, doi: https://doi.org/10.1177/0731684407079423.

M. Idicula, S. Malhotra, K. Joseph, and S. Thomas, Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites, “Composites Science and Technology,” 65 (7–8), pp. 1077–1087, 2005, doi: https://doi.org/10.1016/j.compscitech.2004.10.023.

L. Pothan, S. Thomas, and G. Groeninckx, The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites, “Composites Part A: Applied Science and Manufacturing,” 37 (9), pp. 1260–1269, 2006, doi: https://doi.org/10.1016/j.compositesa.2005.09.001.

L. Pothan, P. Potschke, R. Habler, and S. Thomas, The static and dynamic mechanical properties of banana and glass fiber woven fabric-reinforced polyester composite, “Journal of Composite Materials,” 39 (11), pp. 1007–1025, 2005, doi: https://doi.org/10.1177/0021998305048737.

L. Pothan, Z. Oommen, and S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites, “Composites Science and Technology,” 63 (2), pp. 283–293, 2003, doi: https://doi.org/10.1016/S0266-3538(02)00254-3.

L. Pothan, S. Thomas, and N. Neelakantan, Short banana fiber reinforced polyester composites: mechanical, failure and aging characteristics, “Journal of Reinforced Plastics and Composites,” 16 (8), pp. 744–765, 1997, doi: https://doi.org/10.1177/073168449701600806.

S. Joseph, A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres, “Composites Science and Technology,” 62 (14), pp. 1857–1868, 2002, doi: https://doi.org/10.1016/S0266-3538(02)00098-2.

M. S., N. J.B., and P. Y.P., The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites, “Composites Science and Technology,” 60 (9), pp. 1729-1735, 2000, doi: https://doi.org/10.1016/S0266-3538(00)00056-7.

H. Savastano, P. Warden, and R. Coutts, Brazilian waste fibres as reinforcement for cement-based composites, “Cement and Concrete Composites,” 22 (5), pp. 379–384, 2000, doi: https://doi.org/10.1016/S0958-9465(00)00034-2.

H. Savastano, P. Warden, and R. Coutts, Microstructure and mechanical properties of waste fibre–cement composites, “Cement and Concrete Composites,” 27 (5), pp. 583–592, 2005, doi: https://doi.org/10.1016/j.cemconcomp.2004.09.009.

R. Kumar, V. Choudhary, S. Mishra, and I. Varma, Banana fiber-reinforced biodegradable soy protein composites, “Frontiers of Chemistry in China,” 3 (3), pp. 243–250, 2008, doi: https://doi.org/10.1007/s11458-008-0069-1.

A. V. Kiruthika and K. Veluraja, Physical properties of plant fibers (sisal, coir) and its composite material with tamarind seed gum as low-cost housing material, “Journal of Natural Fibers,” 14 (6), pp. 801–813, 2017, doi: https://doi.org/10.1080/15440478.2017.1279104.

L. Pothan, N. Neelakantan, B. Rao, and S. Thomas, Stress relaxation behavior of banana fiber-reinforced polyester composites, “Journal of Reinforced Plastics and Composites,” 23 (2), pp. 153–165, 2004, doi: https://doi.org/10.1177/0731684404030629.

M. Mariatti, M. Jannah, A. Abu Bakar, and H. Khalil, Properties of banana and pandanus woven fabric reinforced unsaturated polyester composites, “Journal of Composite Materials,” 42 (9), pp. 931–941, 2008, doi: https://doi.org/10.1177/0021998308090452.

N. Venkateshwaran, A. ElayaPerumal, A. Alavudeen, and M. Thiruchitrambalam, Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites, “Materials and Design,” 32 (7), pp. 4017–4021, 2011, doi: https://doi.org/10.1016/j.matdes.2011.03.002.

M. Biswal, S. Mohanty, and S. Nayak, Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites, “Journal of Applied Polymer Science,” 125 (S2), pp. E432–E443, 2012, doi: https://doi.org/10.1002/app.35246.

M. Jawaid and H. Khalil,, Cellulosic/synthetic fiber reinforced polymer hybrid composites. Carbohydr Polym, 86, pp. 1–18, 2011.

M. Jawaid, H. Khalil, and O. Alattas, Woven hybrid biocomposites: dynamic mechanical and thermal properties, “Composites Part A: Applied Science and Manufacturing,” 43 (2), pp. 288–293, 2012, doi: https://doi.org/10.1016/j.compositesa.2011.11.001.

S. Joseph, Z. Oommen, and S. Thomas, Environmental durability of banana-fiber-reinforced phenol formaldehyde composites, “Journal of Applied Polymer Science,” 100 (3), pp. 2521–2531, 2006, doi: https://doi.org/10.1002/app.23680.

M. B. Kulkarni, S. Radhakrishnan, N. Samarth, and P. A. Mahanwar, Structure, mechanical and thermal properties of polypropylene based hybrid composites with banana fiber and fly ash, “Materials Research Express,” 6 (7), p. 075318, 2019, doi: https://doi.org/10.1088/2053-1591/ab12a3.

T. Mohan and K. Kanny, Nanoclay infused banana fiber and its effects on mechanical and thermal properties of composites, “Journal of Composite Materials,” 50 (9), pp. 1261–1276, 2016, doi: https://doi.org/10.1177/0021998315590265.

H. Liu, Q. Wu, and Q. Zhang, Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends, “Bioresource Technology,” 100 (23), pp. 6088–6097, 2009, doi: https://doi.org/10.1016/j.biortech.2009.05.076.

S. Taj, M. A. Munawar, and S. Khan, Natural Fiber-reinforced Polymer Composites, “Proceeding of Pakistan Academy of Sciences,” 44 (2), pp. 129–144, 2007.

Downloads

Published

31-12-2022

How to Cite

[1]
S. Singh, “A Comprehensive Review of Banana Fiber-Reinforced Composites: Properties, Processing and Applications”, J. Comput. Mech. Manag, vol. 1, no. 2, pp. 22–33, Dec. 2022.

Issue

Section

Review Articles

Categories

Received 2022-09-13
Accepted 2022-12-02
Published 2022-12-31

Most read articles by the same author(s)