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Volume 4, Issue 2 of the Journal of Computers, Mechanical, and Management featured a diverse selection of studies
highlighting advancements in intelligent systems, cybersecurity, healthcare technologies, and structural engineering.
These contributions reflected the journal’s ongoing commitment to interdisciplinary research and the development of
data-driven, secure, and scalable solutions. Nikhil Kassetty [1] examined a dual-layered fraud mitigation framework in
fintech by combining blockchain’s transparency with artificial intelligence’s predictive capabilities. The review addressed
emerging challenges in digital financial systems and proposed a holistic solution for real-time threat detection. Pandit
D. Pradeep and Manoj E. Patil [2] introduced a blockchain-driven software engineering framework that enhanced the
scalability and security of IoT ecosystems. By leveraging smart contracts and decentralized control, their framework
offered robust applications across domains such as healthcare, industrial automation, and supply chain management.
Sonam and Jyoti [3] provided a comprehensive narrative review of data mining algorithms—Apriori, FP-Growth, and
ECLAT—for recognizing user behavior. An illustrative walkthrough of Apriori was included to clarify algorithmic
complexity, while the study discussed performance trade-offs and practical implications. Abhishek Kumar et al. [4]
conducted a comparative evaluation of convolutional neural networks for the classification of upper respiratory infections
using chest X-rays. DenseNet demonstrated the highest diagnostic efficiency, while ResNet-50 offered a balanced trade-
off between performance and speed. The findings supported the integration of Al in resource-constrained diagnostic
settings. Suresh Tiwari [5] surveyed recent mechanical joining techniques for metal-composite hybrid structures,
including self-piercing riveting, friction riveting, and form-locked joints developed through additive manufacturing.
The review emphasized joint durability, nanofiber reinforcement, and challenges in manufacturability and long-term
performance. Shaharkar B. Bharat and Manoj E. Patil [6] proposed a blockchain-integrated framework for secure
health monitoring with wearable devices. The study implemented decentralized authentication and smart contract
automation to improve data protection, enable anomaly detection, and address vulnerabilities in cloud-based healthcare
systems. Collectively, these articles demonstrated the journal’s focus on technological convergence and real-world
impact. The editorial board expressed appreciation to the authors for their original research and to the reviewers for
their constructive evaluations. Readers were encouraged to engage with the findings presented in this issue, which
offered valuable insights into the digital, secure, and sustainable future of applied sciences.
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Abstract

This study examines fraud reduction in the fintech industry via the combined use of blockchain and artificial
intelligence (AI). The immutable ledger of blockchain enhances transparency and security, reducing the risk of data
breaches and unauthorized financial transactions. Al, powered by machine learning algorithms, enables real-time,
high-precision fraud detection and prediction. The integration of these technologies in fintech results in efficient,
scalable, and cost-effective fraud prevention frameworks. This mini-review evaluates current advancements, highlights
operational benefits and challenges, and identifies future research directions for secure, innovative financial services.

Keywords: Fintech Systems; Blockchain Technology; Artificial Intelligence; Fraud Mitigation

1. Introduction

The convergence of artificial intelligence (AI) and blockchain technology has transformed the fintech sector, providing a
new paradigm for financial institutions, businesses, and consumers [1]. Al, supported by advanced machine learning
algorithms, utilizes predictive analytics and cognitive computing to automate and optimize core financial operations
such as risk assessment, fraud detection, investment management, and customer service [2, 3]. Meanwhile, blockchain
technology, originating as the backbone of digital currency, has evolved to enable secure, transparent, and efficient
financial transactions worldwide [1, 4]. Blockchain systems have revolutionized payments, settlements, and asset
management by reducing costs and operational risks [4]. Beyond their strengths, integrating AI and blockchain
redefines traditional financial systems by supporting innovations in digital identity, tokenization, decentralized finance
(DeFi), and smart contracts [4]. However, this rapid digitization brings new challenges, such as identity theft, data
breaches, and evolving fraud techniques [5]. As financial services become more accessible through mobile banking and
digital currencies, the need for robust, scalable, and real-time fraud prevention frameworks has intensified. In this
technologically advanced landscape, self-executing blockchain protocols and Al-driven digital banking systems present
opportunities and vulnerabilities. While decentralized blockchain networks offer scalable security, they may harbor
protocol-specific risks. Likewise, Al systems face issues related to algorithmic bias, data privacy, and adaptability
to emerging threats [6]. Integrating these technologies must address privacy, ethical, and operational considerations
to build reliable fraud detection solutions for fintech. AI and blockchain have emerged as complementary tools for
mitigating financial fraud. Al applies advanced data analysis, including deep learning and natural language processing,
to identify suspicious patterns more effectively than conventional methods [6]. Blockchain enhances data integrity and
transparency through decentralized, immutable ledgers, supporting regulatory compliance and Know Your Customer
(KYC) requirements [6, 7]. The synergy between AI’s predictive power and blockchain’s tamper-proof record-keeping
underpins efficient, next-generation fraud prevention systems [8]. Figure 1 illustrates the evolution from a single-tier to
a dual-tier model in financial technology, demonstrating the enhanced security, transparency, and operational efficiency
achieved through integrating blockchain and financial institution nodes [7]. This mini review critically examines the
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Figure 1: Comparison of single-tier and dual-tier models in fintech, highlighting the integration of blockchain for secure
and transparent financial operations [7].

combined application of AI and blockchain for fraud mitigation in fintech. It addresses the need for accurate, scalable,
and real-time fraud detection, evaluates current methodologies, and explores practical advice for deploying advanced
fraud prevention technologies [3].

The article further highlights research objectives, including analyzing cost reduction, exploring synergies and
conflicts in technology integration, and evaluating real-time, scalable fraud detection frameworks [9]. The study also
identifies major challenges—such as scalability, interoperability, security, and regulatory compliance—and concludes by
outlining future research directions for the secure, innovative advancement of financial services [10, 11].

2. Recent Developments and Challenges in AI-Blockchain Enabled Fintech

Recent advances in financial technology are driven by the integration of artificial intelligence (AI) and blockchain,
resulting in enhanced security, efficiency, and innovative financial services. Al supports real-time analytics, fraud
detection, risk assessment, and customer service automation, while blockchain provides immutable transaction ver-
ification, secure digital identities, and decentralized financial processes [12, 3, 1]. Current implementations show
significant improvements in fraud mitigation, operational transparency, and financial product personalization. These
technologies are not limited to traditional banking; they are also transforming cloud-based fintech applications, digital
asset management, and even carbon market monitoring by leveraging AI’s anomaly detection and blockchain’s secure
record-keeping [13, 14]. The combined use of smart contracts, IoT integration, and data science further automates
compliance and boosts reliability in financial reporting and audit [15]. Despite these advantages, several technical
and practical challenges remain. Interoperability between AI and blockchain platforms is hindered by the lack of
standardized interfaces, making integration complex and costly [12]. High computational requirements, data privacy
issues, and algorithmic bias in AI models pose additional barriers. Most existing studies focus on conceptual or
small-scale implementations, leaving a gap in large-scale, real-world evaluation and adoption [16, 17]. Furthermore,
scaling these solutions raises concerns over energy consumption, especially for blockchain networks. Legal and regulatory
uncertainties also persist, as rapid innovation often outpaces the establishment of industry standards.

Achieving compliance and ethical data management is vital for broad adoption and trust in these systems [18, 19].
As a result, future research should prioritize the development of interoperable frameworks, privacy-preserving Al, and
regulatory-aligned solutions to realize the full potential of AI-blockchain integration in fintech.

3. AI and Blockchain Applications in Fraud Mitigation

Artificial intelligence (AI) and blockchain technology are reshaping financial fraud prevention by introducing automation,
transparency, and predictive accuracy. Al is particularly effective in detecting fraudulent behavior by processing
massive datasets in real-time, leveraging algorithms such as decision trees, logistic regression, K-nearest neighbors,
naive Bayes, and random forests [20]. These models identify unusual patterns that may indicate phishing, identity
theft, or money laundering. Figure 2 illustrates a complete Al-based fraud detection pipeline—from data collection to
model evaluation—highlighting critical stages like preprocessing, feature engineering, and hyperparameter tuning. A
simplified decision-making flow in AI fraud systems is shown in Figure 3, where processed data is analyzed to detect
malicious behavior and initiate threat mitigation processes.
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Figure 2: Al fraud detection pipeline: data collection, preprocessing, feature extraction, and model training [20].
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Figure 3: Al-based fraud detection decision flow using supervised learning algorithms [20].

Comparative evaluation of fraud detection datasets, their usage frequencies, and performance metrics further
supports Al’s effectiveness. Figure 4 presents commonly used datasets, with credit card fraud detection leading in
application volume. Figure 5 shows accuracy, detection time, and cost comparisons between traditional and Al-based
fraud detection systems. AI methods demonstrate superior performance, albeit with higher implementation costs.
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Figure 4: Popular datasets used in financial fraud detection research [21].
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Figure 5: Metrics comparison for Al vs. traditional fraud detection methods: accuracy, detection time, and cost [22].

Blockchain adds an immutable and decentralized layer of security to fintech applications. Its implementation
in fraud mitigation involves smart contracts and consensus mechanisms, ensuring transactional transparency and
resistance to tampering. Figure 6 shows a proposed layered architecture integrating Al and blockchain for enhanced
fraud detection.
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Figure 6: Integrated architecture: Al analytic layer, blockchain smart contracts, and multichannel API for real-time
fraud alerts [23].



The superiority of Al-based fraud detection over traditional approaches is quantitatively evident. As shown in
Table 1, AI systems provide markedly higher accuracy, reduced detection times, and—while costlier to implement—offer
substantial operational benefits in the long run [22]. Table 2 further demonstrates the higher true positive rates and
lower false positive rates of Al-enabled detection, underscoring the practical value of Al in modern fintech fraud
prevention [22].

Table 1: Comparative Table on AI Fraud Detection (2019-2024) [22].

Detection Method | Accuracy (%) | Time to Detect (Hours) | Cost (USD)
Traditional Methods 77.5 43 $55,000
Al-Based Methods 90.67 7.5 $112,500

Table 2: Fraud Detection: True Positive Rate (TPR) and False Positive Rate (FPR) [22].

Detection Method | True Positive Rate (TPR) | False Positive Rate (FPR)
Traditional Methods 77.5 43
Al-Based Methods 90.67 7.5

Blockchain applications in identity verification, anti-money laundering, and secure settlements have become prevalent
in banking. Figure 7 illustrates core blockchain use cases within fintech ecosystems, including trade finance and tokenized
payments. Overall, the synergy of Al and blockchain offers real-time detection, tamper-proof recording, and increased
customer trust. However, challenges such as energy efficiency, cost, and algorithmic fairness remain critical areas for
future research and optimization.
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Figure 7: Core blockchain applications in financial services, including digital identity, asset transfer, and fraud
prevention [7].

4. Challenges and Research Gaps

Despite the transformative potential of blockchain and Al in fintech, several critical challenges must be addressed to
enable reliable and widespread adoption. These challenges include scalability, security, interoperability, regulatory
compliance, and standardization.

e Scalability and Interoperability: Both blockchain and Al systems are resource-intensive, requiring substantial
computational power to manage large transaction volumes and complex datasets efficiently [24]. Blockchains
often face limitations in transaction throughput and latency, while AI systems demand distributed computing
resources for real-time processing. Interoperability is also a significant barrier, as the absence of standardized
protocols hinders seamless integration across blockchain networks and Al platforms. Greater standardization and
cross-platform collaboration are essential for scalable deployments.

e Security: Financial systems remain prime targets for cyberattacks due to the sensitive nature and value of
financial data [25]. While Al-driven fraud detection systems have enhanced security, technical vulnerabilities
persist. Blockchain security depends on robust cryptographic algorithms, but future advancements such as
quantum computing may compromise current standards. Furthermore, the complexity of decentralized consen-
sus mechanisms introduces new attack vectors, and poorly designed smart contracts may allow for errors or
exploitation [25].



e Regulatory Compliance: Compliance with financial regulations is essential for fintech operations. Al and
blockchain technologies must adhere to stringent requirements for anti-money laundering (AML), know-your-
customer (KYC), and transaction monitoring [24, 26]. Integrating Al-based compliance with legacy systems can
be technically challenging, and the rapid pace of fintech innovation frequently outpaces regulatory frameworks,
complicating consistent and effective oversight.

e Research Gaps: There are notable gaps in the standardization and practical deployment of integrated
Al-blockchain systems for fraud prevention. The lack of unified frameworks limits scalability and adoption
across financial ecosystems [18]. Most existing research focuses on theoretical or small-scale pilot studies, with
limited real-world validation [2]. Moreover, privacy-preserving methods, ethical considerations, and comprehensive
interoperability solutions remain underexplored [27].

Addressing these challenges and research gaps will require coordinated efforts among technologists, regulators,
and industry stakeholders to develop scalable, secure, and compliant frameworks for the next generation of fintech
innovation.

5. Conclusion and Future Scope

In summary, the integration of blockchain and artificial intelligence (AI) represents a transformative advancement
in fintech fraud mitigation. By combining blockchain’s secure, decentralized, and transparent ledger systems with
AT’s capabilities in real-time anomaly detection, predictive analytics, and adaptive learning, financial institutions can
establish robust frameworks that significantly enhance financial security and operational efficiency. This integration
not only builds trust among stakeholders but also reduces operational inefficiencies and associated costs. Looking
ahead, the development of scalable and energy-efficient blockchain architectures remains a critical area for innovation.
The adoption of advanced Al techniques, such as deep learning and reinforcement learning, can further improve the
adaptability and accuracy of fraud detection systems. Achieving seamless integration between blockchain and Al for
real-time data sharing will be essential for maximizing the benefits of these technologies. Moreover, global collaboration
on regulatory frameworks will be necessary to foster the widespread adoption of Al-blockchain fintech solutions.
As financial institutions increasingly implement these integrated systems, they can expect enhanced transaction
transparency, improved customer trust, and greater compliance with regulatory standards, ultimately shaping a more
secure and innovative financial ecosystem.
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Abstract

The rapid advancement of the Internet of Things (IoT) is reshaping industries by enabling seamless communication
between devices, real-time data collection, and automation. Given the surge in IoT applications, challenges related
to security, scalability, and interoperability have become increasingly critical. This study presents a state-of-the-art
software engineering framework designed to address these limitations through the integration of blockchain technology
and smart contracts. By leveraging the decentralized, immutable, and transparent nature of blockchain, the proposed
framework enhances trust and security within IoT environments. Smart contracts, as secure, self-executing code,
facilitate autonomous interactions between IoT devices without relying on centralized control. Additionally, the
framework introduces novel strategies for optimizing resource management and data handling efficiency while
improving system scalability across distributed networks. The synergistic use of blockchain and smart contracts
not only resolves key IoT challenges but also contributes to the development of robust, efficient, and scalable
IoT ecosystems. The framework is applicable across diverse domains, including healthcare, smart cities, supply
chain management, and industrial automation, fostering innovative, self-governing IoT systems throughout their
operational lifecycle.

Keywords: Next-Gen IoT; Blockchain Integration; Smart Contracts; IoT Security; Decentralized Systems; Scalable
IoT Framework

1. Introduction

The Internet of Things (IoT) has emerged as a transformative technology in the 21st century, significantly impacting
various sectors by enabling seamless communication among interconnected devices. The rapid proliferation of IoT
systems has led to a substantial increase in the number of connected devices and their communication channels,
thereby necessitating the development of robust, scalable, and secure frameworks. Traditional IoT architectures often
encounter challenges related to data privacy, security, and interoperability, primarily due to their reliance on centralized
control mechanisms [1]. To address these limitations, the integration of next-generation blockchain technology and
smart contracts introduces a paradigm shift in IoT development, facilitating the evolution of a modern software
engineering framework. Unlike conventional IoT systems that are constrained by centralized servers, blockchain
technology offers decentralized, immutable, and secure data management capabilities. Additionally, mechanisms such
as proof of authority and smart contracts—self-executing agreements triggered by predefined conditions—minimize
third-party dependencies and enhance trustless automation in IoT networks [2]. In this architecture, blockchain serves
as a transparent and verifiable ledger, ensuring data integrity and decentralized control of IoT devices. Smart contracts
enhance operational efficiency by enabling autonomous, real-time decision-making among devices and applications
without human intervention.
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This integrated approach significantly improves security, privacy, scalability, and system performance, making it
well-suited for applications in healthcare, finance, smart cities, supply chain management, and industrial automation.
The convergence of blockchain and smart contracts with IoT represents a significant advancement in software engineering,
fostering the development of secure, scalable, and intelligent IoT ecosystems. This introduction outlines the foundational
strengths of the proposed framework, highlighting its practical applications and its potential to reshape contemporary
technological solutions.

2. Related Work

The integration of blockchain technology into IoT networks has attracted substantial attention across various industrial
domains, primarily due to its potential to enhance security, data integrity, and operational efficiency. Numerous studies
have explored the viability and implications of this convergence. Mercan et al. (2020) [3] proposed a blockchain-based
ToT forensics framework to improve the security and accountability of IoT devices. They emphasized the shortcomings
of traditional forensic methods in handling decentralized IoT platforms and demonstrated the effectiveness of blockchain
in maintaining audit trails for forensic evidence. Shaikh et al. (2021) [4] examined the role of blockchain in decentralized
data storage within IoT systems. Their study underscored the significance of blockchain’s immutability, privacy, and
consensus mechanisms in addressing scalability and security concerns. Kabir et al. (2021) [5] introduced a secure cloud
communication model that integrates blockchain with IoT. Their framework employed smart contracts to automate
security processes, ensuring secure data exchange between IoT devices and cloud services. Madhwal and Yanovich (2024)
[6] presented a live implementation of a blockchain-enabled IoT supply chain system. Their work showcased the potential
of blockchain in real-time goods tracking, fraud prevention, and overall supply chain transparency and efficiency.
Al-Nbhany et al. (2024) [7] conducted a comprehensive review of blockchain applications in IoT-based healthcare
systems. Their research highlighted the technology’s capability to secure patient data, facilitate remote monitoring, and
enhance healthcare data integration and protection. Collectively, these studies underscore the transformative potential
of blockchain in IoT environments, laying the groundwork for more secure, transparent, and efficient systems. However,
existing solutions often lack a unified, scalable framework that seamlessly integrates blockchain with smart contracts
for comprehensive automation and trust management in IoT networks. The proposed methodology aims to address
these gaps by developing an advanced, blockchain-driven IoT software engineering framework.

3. Proposed Methodology

A comprehensive understanding of blockchain algorithms and their integration with IoT systems is essential for
enabling secure, decentralized, and transparent operations. Key blockchain mechanisms such as consensus algorithms,
cryptographic hash functions, and public-key cryptography form the foundation of a decentralized ledger, allowing
ToT devices to interact securely and autonomously [4]. Consensus mechanisms ensure agreement across distributed
nodes. Proof of Work (PoW), used by Bitcoin, is secure but computationally intensive and unsuitable for IoT due to
energy demands [5]. Proof of Stake (PoS) offers a more energy-efficient alternative by selecting validators based on
token holdings [3]. Practical Byzantine Fault Tolerance (PBFT) enhances reliability by tolerating malicious nodes
through multiple rounds of validation [6]. Delegated Proof of Stake (DPoS) scales effectively by enabling IoT devices
to delegate validation duties to more powerful nodes [7]. Hash functions ensure data integrity and immutability.
SHA-256, a widely used cryptographic algorithm, transforms data into fixed-length hash values. Any modification to
the input data changes the hash, enabling effective detection of tampering in ToT transmissions [8-10]. Public-key
cryptography secures blockchain transactions by assigning unique key pairs to IoT devices. This approach enables
authenticated and encrypted communication, ensuring only authorized devices can interact on the network. Elliptic
Curve Cryptography (ECC) is particularly efficient for IoT due to its low computational overhead [11]. Smart contracts
are self-executing scripts that automate operations based on predefined conditions. These contracts eliminate the
need for manual intervention, enhancing system responsiveness. Trigger conditions may include sensor thresholds or
event-based inputs, while the execution logic specifies the resulting actions. Once deployed, the contract code remains
immutable, preserving trust [12, 13]. The proposed algorithm integrates these technologies to facilitate secure, scalable
transactions and autonomous device interactions in IoT environments.

3.1. Assumptions:

e Each IoT device is registered with a unique identifier and cryptographic key pair.
e Devices connect to a blockchain using consensus mechanisms such as PoS or PBFT.

e Smart contracts govern device operations and data recording [14].
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3.2. Algorithm: IoT Device Interaction Using Blockchain and Smart Contracts

Algorithm 1 IoT Device Interaction Using Blockchain and Smart Contracts

1: procedure INITIALIZE

2: Initialize BlockchainNetwork ()

3: Register IoT Device D; with public key PK;

4: end procedure

5. procedure REGISTERDEVICE(D;, PK;)

6: if BlockchainNetwork.verifyUnique (D;) then
7 Address; <+ BlockchainNetwork.generateAddress (D;)
8: BlockchainNetwork.register (D;, Address;, PK;)
9: return Address;

10: else

11: return “Device already registered”

12: end if

13: end procedure

14: procedure TRANSMITDATA(D;, SD;, PKg)

15: EncData; + Encrypt(SD;, PKp)

16: Tz; + BlockchainNetwork.createTransaction(D;, EncData;)
17: BlockchainNetwork.submitTransaction(7'z;)
18: return 7'x;

19: end procedure

20: procedure CONSENSUSVALIDATION(7'z;)

21: if BlockchainNetwork.consensus.verify(T'z;) then
22: BlockchainNetwork.addBlock(Tx;)

23: return “Transaction added to blockchain”

24: else

25: return “Transaction failed validation”

26: end if

27: end procedure

28: procedure SMARTCONTRACTEXECUTION(T'z;, SC})
29: if SC_j.conditionMet (Tx_i) then
30: ExecuteAction(SCj, Dy)
31: return “Smart contract executed”
32: else
33: return “Conditions not met”

34: end if

35: end procedure

36: procedure ACKNOWLEDGEEXECUTION(Dy,, T'x;)

37: Ack <+ Dj.sendAcknowledgment(Tx;)

38: BlockchainNetwork.recordAck (Ack)

39: return “Acknowledgment recorded”

40: end procedure

41: procedure ENCRYPT(SD;, PKp)

42: EncData; + AsymmetricEncrypt(SD;, PKp)

43: return EncData;

44: end procedure

This algorithm ensures secure, transparent, and autonomous interaction between IoT devices through blockchain
validation and smart contract automation. The system maintains data integrity and enables real-time responses while
reducing human involvement [15].

4. Results and Discussion

Simulation tools and supporting technologies are vital in the development and validation of blockchain-integrated IoT
systems. Platforms such as MATLAB, Simulink, and Cisco Packet Tracer are used to model IoT networks, simulate
data flows, and evaluate device interactions. The outcome of these simulations includes the generation of encrypted
smart contracts, which are subsequently deployed on blockchain platforms such as Hyperledger Fabric and Ethereum to
facilitate secure transactions. Containerization tools like Docker and orchestration frameworks like Kubernetes further
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support system deployment and scalability. Collectively, these technologies enable the development of robust, scalable,
and replicable IoT solutions across automotive, industrial, and smart infrastructure domains [16-18].

Table 1: Qualitative Performance Comparison of IoT Architectures

Metrics Centralized IoT Traditional Blockchain IoT Blockchain + PoW Blockchain + PoS Proposed (Blockchain + SC)
Data Security Low Medium High High Very High
Scalability High Low Medium High High
Latency Low High High Medium Low
Energy Efficiency High Low Very Low Medium High
Consensus Speed N/A Slow Slow Fast Fast
Transaction Throughput (TPS) High Low Low Medium High
Fault Tolerance Medium High Medium High Very High
Automation Capability Low Low Medium Medium Very High
Transparency Low High High High Very High
Data Immutability Low High High High Very High
Cost Efficiency Medium High Low Medium High
Real-Time Processing Medium Low Low Medium High
Interoperability Medium Low Low Medium High

Table 2: Quantitative Results Analysis (Performance Scores)

Metrics Centralized IoT Traditional Blockchain IoT Blockchain + PoW Blockchain + PoS Proposed (Blockchain 4+ SC)
Data Security 4 6 8 9 10
Scalability 8 4 5 8 9
Latency 3 6 5 7 9
Energy Efficiency 9 5 3 7 9
Consensus Speed - 3 4 8 9
Transaction Throughput (TPS) 9 3 4 7 9
Fault Tolerance 5 7 6 8 10
Automation Capability 2 4 6 7 10
Transparency 3 8 8 9 10
Data Immutability 3 8 8 9 10
Cost Efficiency 7 4 2 7 9
Real-Time Processing 6 4 4 7 9
Interoperability 6 5 5 7 9

Comparison of loT Systems Across Different Metrics

Centralized loT System

Traditional Blockchain loT

Blockchain + PoW

Blockchain + PoS

Proposed Blockchain + Smart Contracts

Performance Score

Metrics

Figure 2: Results Analysis: Performance Comparison of IoT Systems
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The quantitative results clearly demonstrate the superiority of the proposed blockchain-integrated IoT framework
enhanced by smart contracts. A performance score of 10 in data security reflects the benefits of cryptographic
immutability inherent in blockchain. Scalability and latency metrics also score high due to efficient consensus
mechanisms and minimized overhead. Energy efficiency is significantly improved through the use of lightweight
consensus algorithms such as PoS. Consensus speed and transaction throughput are notably enhanced, allowing the
system to support real-time, high-frequency IoT interactions. Automation capability reaches its peak due to the
self-executing nature of smart contracts. Transparency and data immutability are maximized, ensuring accountability
and integrity. The comparative visualizations in Figures 2 and 3 further validate these outcomes. The proposed system
consistently outperforms centralized IoT models, traditional blockchain approaches, and PoW-based systems across all
key metrics. While PoS mitigates energy concerns, only the proposed architecture effectively integrates automation
and real-time processing. In summary, the proposed blockchain-smart contract model achieves optimal balance
across performance dimensions—security, efficiency, automation, cost, and interoperability—making it well-suited for
large-scale, modern IoT deployments.

5. Conclusion

The integration of blockchain technology with smart contracts represents a significant advancement in the development
of next-generation IoT systems. This study has demonstrated that the proposed framework addresses the core challenges
faced by traditional IoT architectures, including issues related to security, scalability, latency, and energy efficiency. By
leveraging decentralized consensus mechanisms and self-executing smart contracts, the framework ensures trustless
automation, robust data integrity, and real-time responsiveness. Comparative analysis confirms that the proposed
system outperforms centralized and conventional blockchain-based IoT models across multiple metrics, including data
security, fault tolerance, transparency, and operational efficiency. The use of energy-efficient consensus algorithms such
as Proof of Stake (PoS) enables practical implementation in resource-constrained IoT environments. Furthermore, the
automation enabled by smart contracts significantly reduces the need for manual intervention, enhancing reliability and
reducing operational overhead. From healthcare and finance to smart cities and industrial automation, the versatility
and robustness of the proposed framework make it suitable for a broad spectrum of applications. Its high degree of
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interoperability, transparency, and cost-effectiveness positions it as a transformative solution capable of meeting the
evolving demands of IoT ecosystems. Ultimately, the framework paves the way for intelligent, secure, and scalable IoT
infrastructures that can drive innovation and operational excellence in the digital age.
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Abstract

This review examines key data mining algorithms used for user behaviour recognition in computational systems,
focusing on frequent pattern mining techniques. We summarize foundational methods such as Apriori, FP-Growth,
and ECLAT, comparing their operational principles and limitations. A frequency-based literature analysis shows
the widespread use of Apriori in market basket analysis. To illustrate its workings, we include a demonstrative
walkthrough of the Apriori algorithm using a hypothetical dataset. The article concludes with insights into
performance trade-offs and future directions in algorithmic efficiency.

Keywords: Data Mining; User Behavior; Apriori; FP-Growth; ECLAT; Association Rule Mining

1. Introduction

In today’s data-driven landscape, organizations across industries—such as retail, healthcare, and finance—generate
massive amounts of data daily. The critical challenge lies in converting this raw data into actionable insights, particularly
for understanding user behaviour patterns. Data mining, also known as Knowledge Discovery in Databases (KDD),
plays a central role in extracting such patterns [1]. Frequent Pattern Mining (FPM), a key subfield of data mining,
focuses on discovering recurring relationships among data items. These patterns often indicate significant behavioural
traits such as co-purchasing habits or symptom clusters, which are useful for strategic planning and decision-making.
Algorithms like Apriori [2, 3], FP-Growth [4], and ECLAT [5] have been widely applied in tasks like market basket
analysis to uncover such patterns. This review summarizes major FPM techniques used in behaviour recognition,
compares their computational characteristics, and highlights their practical strengths and weaknesses. A step-by-step
example using the Apriori algorithm on a hypothetical dataset is included to illustrate its working principles.

2. The Knowledge Discovery Process

Knowledge Discovery in Databases (KDD) is a structured, multistage process that converts raw data into actionable
insights. It includes the sequential steps of data selection, preprocessing, transformation, data mining, and interpretation.
Each stage plays a vital role—selection targets relevant datasets, preprocessing handles noise and inconsistencies,
transformation formats the data for analysis, mining extracts patterns, and interpretation evaluates these patterns for
their real-world utility. These steps are especially critical when analyzing user behaviour, as clean, well-structured data
is essential for detecting accurate patterns. Figure 1 illustrates the overall KDD pipeline.
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Figure 1: Stages of Knowledge Discovery in Databases (KDD), from data selection to knowledge interpretation [6].

3. Methodology

This study follows a narrative review framework supplemented with an illustrative example. It investigates frequent
pattern mining (FPM) algorithms applied to user behaviour recognition, focusing on Apriori, FP-Growth, and ECLAT.
A total of 13 academic sources were reviewed, including journal articles and conference proceedings published between
1993 and 2017. The literature was manually gathered from repositories such as IEEE Xplore, SpringerLink, and Google
Scholar, prioritizing works that detailed algorithmic performance or application-specific evaluations. To demonstrate
practical application, a step-by-step walkthrough of the Apriori algorithm is provided using a small hypothetical dataset.
This example illustrates how frequent itemsets and association rules are generated using defined support and confidence
thresholds. As a narrative review, this work does not follow a systematic review protocol or include formal quality
appraisal. Instead, it aims to synthesize core themes and trends in algorithm design and application. The hypothetical
dataset serves as an educational tool and does not reflect the complexity of real-world transactional data.

4. Frequent Pattern Mining Techniques

Frequent Pattern Mining (FPM) is a key technique in data mining for identifying recurring relationships among items
in large datasets. One of its most widely known applications is market basket analysis, where analysts identify item
combinations that frequently co-occur in purchase transactions [4, 2]. The goal is to discover itemsets that appear
together in the dataset with a frequency above a specified threshold, known as support. Once these frequent itemsets
are identified, association rules can be generated to describe conditional relationships, typically measured using metrics
such as confidence and lift. Several algorithms have been developed to address the computational challenges of frequent
itemset mining. The most prominent include:

e Apriori Algorithm: Introduced by Agrawal and Srikant in 1994, this foundational method uses a level-wise
approach and the Apriori property to eliminate infrequent itemsets early in the process. It requires multiple
database scans and is sensitive to high dimensionality [2, 3].

e FP-Growth: This algorithm avoids candidate generation by compressing the dataset into a prefix-tree structure
called the FP-tree. It then recursively extracts frequent patterns from the tree, resulting in faster performance,
particularly for large and sparse datasets [4].

e ECLAT (Equivalence Class Clustering and bottom-up Lattice Traversal): Unlike the above horizontal-
format methods, ECLAT uses a vertical data format and applies set intersection on transaction ID lists to
compute support. It is often more efficient on dense datasets but can consume more memory [5].

The effectiveness of each algorithm depends on factors such as dataset size, itemset density, and dimensionality. Their
relative performance and resource efficiency have been the focus of numerous comparative studies. In practice, frequent
pattern mining is implemented within layered data mining systems that integrate user interfaces, data preprocessing
modules, mining engines, and result visualization components. These systems structure the transition from raw data to
actionable knowledge. Figure 2 illustrates the typical architecture of a data mining system.
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Figure 2: Typical data mining system architecture, showing the flow from user interface to data sources and pattern
discovery [6].

FPM algorithms can also be categorized by their underlying computational strategies. Figure 3 shows this
classification, which includes join-based methods like Apriori, tree-based methods like FP-Growth, and vertical
intersection methods such as ECLAT. This taxonomy highlights key differences in how algorithms process and organize
data.
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Figure 3: Classification of frequent itemset mining algorithms based on their core strategy: join-based, tree-based, and
vertical format methods.
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5. Association Rule Mining Applications

Association Rule Mining (ARM) is a data mining technique used to uncover co-occurrence relationships between
variables in large transactional datasets. It builds on frequent pattern mining by identifying if-then rules that describe
how the presence of one set of items in a transaction implies the presence of another. ARM is widely applied in domains
such as retail, healthcare, education, and cybersecurity [4, 7]. In retail, one of the most common applications is market
basket analysis. For example, if many customers who purchase bread and milk also purchase eggs, the association
rule Bread, Milk — Eggs can be generated. These patterns inform product placement, promotional bundling, and
inventory management. In healthcare, ARM is used to detect associations between symptoms, diagnoses, or treatments.
A rule might reveal that patients diagnosed with condition A often exhibit symptom B, aiding early diagnosis or
treatment planning [7]. Similar applications are found in educational analytics, where patterns in student behavior or
performance can guide interventions. ARM relies primarily on three metrics:

e Support: The proportion of transactions that contain a given itemset.
e Confidence: The conditional probability that a transaction containing one itemset also contains another.

e Lift: The ratio of observed support to that expected if the itemsets were independent. A lift greater than 1
indicates a positive association.

These metrics help evaluate the relevance and strength of discovered rules. Together, ARM techniques contribute not
only to commercial recommendation systems but also to behaviour modeling, anomaly detection, and strategic decision
support across diverse sectors.

6. Apriori Algorithm: Mechanism and Demonstration

The Apriori algorithm is one of the earliest and most widely used algorithms for mining frequent itemsets and association
rules. It operates by iteratively identifying frequent itemsets of increasing length, using the principle that all non-empty
subsets of a frequent itemset must also be frequent |2, 8]. Apriori employs a breadth-first search strategy. In each
iteration, candidate itemsets are generated by joining frequent itemsets from the previous iteration. These candidates
are then pruned based on a minimum support threshold. Once all frequent itemsets are identified, association rules are
generated and evaluated using confidence thresholds. To demonstrate the algorithm’s working, consider a hypothetical
dataset of transactions:

Table 1: Sample Transactions

Transaction ID Items

T100 1,3, 4
T200 2,3,5
T300 1,2,3,5
T400 2,5

With a minimum support threshold of 50% and confidence threshold of 70%, the algorithm proceeds as follows:
e Step 1: Count support for each item. Items 1, 2, 3, and 5 meet the 50% support threshold.

e Step 2: Generate candidate 2-itemsets. Frequent pairs include {1,3}, {2,3}, {2,5}, and {3,5}.

e Step 3: Generate candidate 3-itemsets. Only {2,3,5} meets the support threshold.

e Step 4: Generate association rules. For example, the rule {2,3} — {5} is evaluated using confidence:
Support({2,3,5}) / Support({2,3}) = 0.5 / 0.75 = 66.7%.

Table 2: Frequent Itemsets and Support

Itemset Support
{2, 3, 5} 50%
{1, 3}, {2, 3}, {2, 5}, {3, 5} 50-75%
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While effective and interpretable, Apriori has several known limitations:
e Requires multiple database scans, increasing computational cost.

e Generates large numbers of candidate itemsets.

e Performance degrades with dense or high-dimensional data.

These limitations have motivated the development of more efficient algorithms, which are discussed in the next
section. The following table summarizes the key findings from 13 reviewed studies. Each entry includes the authors,
research focus, algorithm used, main conclusions, and publication year. This table supports the frequency-based citation
analysis and highlights recurring observations across various implementations.

Table 3: Summary of Reviewed Studies on Apriori and Its Variants

No. Author(s) Algorithm Conclusion Year
1 A. Imran and P. Ranjan [9] Improved Apriori Costly, but achieves high compu- 2017
tation accuracy.
2 A. Imran and P. Ranjan 9] Apriori Remains costly with large compu- 2017
tation time.
3 Nadeem Ur-Rahman [10] Data Mining Takes large execution time. 2017
4 S. Dhanya et al. [11] MapReduce Apriori Uses vertical/horizontal layout; 2016
slower execution.
5 R. Karthiyayini and J. Apriori Identifies disease efficiently, but 2015
Jayaprakash [7] performance decreases with more
symptoms.
6 Rahul Shukla and A. K. Solanki Apriori Costly and time-consuming. 2015
1]
7 P. Prithiviraj and R. Porkodi [4] Apriori + Others Apriori takes more time and gives 2015
less accuracy.
8 Paresh Tanna and Y. Ghodasara Apriori Does not reduce number of scans; 2014
[3] time-consuming.
9 Jayshree Jha and Leena Ragha [2] Improved Apriori Applies only to educational data; 2013
reduces time but lowers perfor-
mance.
10 K. Geetha and S. K. Mohiddin [§] Data Mining High computational load. 2013

11 Z. Farzanyar and N. Cercone [5] Data Mining (MapReduce) Handles large data but slow; only 2013
extracts data.

12 C. Kaur [12] Apriori Suggests online and single-scan 2013
variants for future.

7. Challenges and Future Directions

While frequent pattern mining algorithms such as Apriori, FP-Growth, and ECLAT have proven useful in behavioural
analysis and recommendation systems, they are not without limitations. Several challenges were consistently noted
across the reviewed literature:

e Scalability: Algorithms like Apriori perform poorly on large or dense datasets due to repeated scans and
exponential candidate growth.

e Memory consumption: Storing and evaluating large sets of candidate itemsets or trees (in FP-Growth) can
exceed available memory, especially in real-time applications.

e Runtime complexity: High-dimensional data leads to longer processing times, making these algorithms less
practical in environments with tight latency requirements.

To address these challenges, future work in the field is exploring several directions:

e Hybrid algorithms: Combining features of Apriori and FP-Growth, or integrating pruning techniques from
different paradigms, can reduce overhead. Early research has shown hybrid approaches to improve speed and
memory efficiency [4].
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e Parallel and distributed mining: Frameworks like Hadoop and Spark have been used to improve runtime on
large datasets by distributing workload across nodes [13, 9].

e Memory-efficient data structures: Advanced indexing techniques and vertical data layouts can reduce the
algorithm’s memory footprint, especially in MapReduce contexts [11].

e Expanded mining scope: Extending FPM to handle temporal, hierarchical, or streaming data can broaden its
applicability in real-time analytics. This is a growing research direction aimed at making mining suitable for
dynamic datasets.

Future studies should also aim to benchmark algorithms using real-world datasets and standardized performance
metrics such as runtime, memory usage, precision, and scalability. This will help validate theoretical improvements and
support more informed selection in practical deployments.

8. Conclusion

This article reviewed major data mining algorithms used in user behaviour recognition, with a focus on frequent pattern
mining techniques such as Apriori, FP-Growth, and ECLAT. By analyzing their frequency of use in the literature
and discussing their operational mechanisms, we highlighted both their strengths and limitations. A step-by-step
demonstration of the Apriori algorithm on a hypothetical dataset illustrated how frequent itemsets and association
rules are generated. Among the reviewed techniques, Apriori remains the most cited and widely taught, though it
is increasingly challenged by more efficient alternatives in practical settings. The review identifies key performance
trade-offs and recurring implementation issues such as runtime complexity and memory use. Future research should
continue exploring hybrid models and distributed systems to enhance algorithmic efficiency, especially in large-scale,
real-time data environments where existing methods struggle with scalability and resource constraints. Ultimately, the
choice of algorithm should be guided by data characteristics, available computational resources, and the specific goals
of the behaviour analysis task.
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Abstract

Upper respiratory infections (URIs) are among the most prevalent global health concerns, yet their burden
remains underrepresented in epidemiological data. This study investigates the prevalence and clinical significance of
URIs and evaluates the diagnostic potential of artificial intelligence (AI) models for their automatic classification
using chest X-ray images. A multiclass dataset comprising URTI, pneumonia, bronchiectasis, and bronchiolitis cases
was curated and analyzed using four leading convolutional neural networks (CNNs): VGG16, VGG19, ResNet-50, and
DenseNet. These models were assessed based on accuracy, precision, recall, F1-score, and computational efficiency.
DenseNet achieved the highest diagnostic accuracy and parameter efficiency, making it well-suited for deployment
in resource-constrained environments. ResNet-50 offered a favorable trade-off between speed and performance,
supporting real-time clinical integration. The findings advocate for the application of Al-assisted diagnostic systems
to enhance URI detection, especially in settings with limited healthcare infrastructure.

Keywords: Upper Respiratory Infections; Artificial Intelligence; Convolutional Neural Networks; DenseNet; ResNet-50

1. Introduction

Upper respiratory tract infections (URTISs) represent a significant public health concern, contributing substantially to
global morbidity and mortality. A 2016 global burden assessment estimated that respiratory tract infections (RTIs)
were responsible for approximately 2.4 million deaths and 336.5 million cases globally. In Asia, RTIs account for
nearly 7 million annual visits to general practitioners, with individuals typically experiencing two to five episodes per
year. The severity and outcomes of RTIs are influenced by the interplay of infectious agents, environmental factors,
and host characteristics. These infections also exert a considerable economic burden through direct medical costs
(e.g., hospitalizations, outpatient visits, and antibiotic use) and indirect costs, such as lost productivity [1]. Given
the rapidly changing climatic and sociodemographic conditions, epidemiological monitoring of RTIs is critical for
informing effective public health interventions. Accurate and timely diagnosis plays a pivotal role in guiding clinical
management, optimizing antimicrobial therapy, and limiting the overuse of broad-spectrum antibiotics—thus helping to
curb the spread of antimicrobial resistance [2]. Most upper RTIs are viral in origin and self-limiting. The common cold,
characterized by nasal discharge, sneezing, congestion, and sore throat, is often caused by the respiratory syncytial
virus, rhinovirus, adenovirus, influenza virus, parainfluenza virus, and coronaviruses. Acute laryngitis and pharyngitis
are similarly viral in most cases, though bacterial agents such as Corynebacterium diphtheriae, Haemophilus influenzae,
and Branhamella catarrhalis are occasionally implicated [2].
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This study addresses the gap in comprehensive comparative analyses of artificial intelligence (AI) models for
automated URI detection from medical imaging, especially in low-resource settings. Four CNN models were evaluated:
VGG16, VGG19, ResNet-50, and DenseNet—benchmarking their performance in URI classification using a curated
multi-class chest X-ray dataset. Metrics include accuracy, precision, recall, Fl-score, and computational efficiency.
Our findings identify DenseNet as the most accurate and resource-efficient model, while ResNet-50 offers an optimal
balance between accuracy and speed for real-time deployment. These results support the potential of Al-driven tools
to enhance URI diagnosis in diverse healthcare environments.

2. Literature Review

Artificial intelligence (AI) and deep learning have been widely adopted in recent years for the classification of respiratory
conditions using chest radiographic images. Most studies rely on public datasets such as NIH ChestX-rayl4, CheXpert,
and Kaggle pneumonia collections [3-5]. These datasets are typically preprocessed using image resizing, normalization
with ImageNet mean values, and contrast enhancement techniques. Augmentation techniques—such as flipping, rotation,
and cropping—are commonly used to mitigate class imbalance and improve generalization [6, 7]. Some researchers
also employ synthetic oversampling methods like SMOTE to address minority class issues [8]. Model selection is
largely driven by the trade-off between accuracy and computational feasibility. VGG16 and VGG19 offer stable
performance but are parameter-heavy (138M-144M), which limits their deployment in real-time or mobile contexts
[9, 10]. ResNet-50 addresses training stability through residual connections and offers a good compromise between
accuracy and efficiency [11]. DenseNet’s layer-wise connectivity enables high accuracy with fewer parameters, making
it more practical for resource-constrained environments [8]. Transfer learning remains a core training strategy, with
pretrained ImageNet models being fine-tuned on domain-specific data [10]. Cross-validation is standard for robustness,
and ensemble methods are used to further boost prediction stability and reduce variance [12]. Evaluation metrics
typically include accuracy, precision, recall, Fl-score, and AUC, with attention increasingly given to class-specific
metrics for conditions like bronchiectasis and URTT [5, 7]. Interpretability tools such as Grad-CAM and LIME are
often integrated into model pipelines to provide visual explanations of prediction rationale, increasing clinical trust
[13, 14]. Newer transformer-based models like Vision Transformers (ViT) show promise in outperforming traditional
CNNs by capturing long-range dependencies, although they require greater computational resources [15]. Overall,
while current research validates the effectiveness of deep learning for respiratory diagnostics, methodological gaps
persist—especially concerning clinical validation, real-world deployment, and generalizability across populations. The
present study addresses these issues by systematically comparing four CNN architectures under a unified experimental
setup to evaluate their performance, interpretability, and deployment feasibility in low-resource settings.

3. Methodology

This study adopts an experimental design to evaluate the performance of convolutional neural networks (CNNs)
for automated classification of upper respiratory tract infections (URTIs) using chest X-ray images. Four widely
used CNN architectures—VGG16, VGG19, ResNet-50, and DenseNet-169—were compared based on classification
accuracy, parameter efficiency, and computational performance. A dataset of 6,542 chest X-ray images was compiled
from open-access sources such as Kaggle and NIH ChestX-ray14, supplemented by clinical contributions. The images
were categorized into four diagnostic classes: Normal (2,150), Pneumonia (2,800), URTT (1,200), and Bronchiectasis
(392). The bronchiectasis class was significantly underrepresented, creating a class imbalance that could bias model
performance. To address this, augmentation techniques were applied as detailed in Table 1.

Table 1: Augmentation Strategies per Class

Class Original Augmentation Method Final Count Purpose

Bronchiectasis 392 SMOTE + Geometric transforms 1,176 Addressed class imbalance via
synthetic samples.

URTI 1,200 Flip, +20° rotation 2,400 Maintained feature integrity
while doubling data.

Pneumonia 2,800 Brightness adjustment 2,800 Increased contrast diversity with-
out duplication.

Normal 2,150 None 2,150 Prevented overfitting from domi-
nant class.
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All images were resized to 224 x224 pixels and normalized using the standard ImageNet mean and standard deviation.
Preprocessing included noise reduction using Gaussian and median filters, contrast enhancement to emphasize structural
differences, and multiple forms of augmentation: random cropping, rotation, flipping, intensity variation, and translation.
These steps improved the dataset’s diversity and helped reduce overfitting during training. Model selection focused
on architectures that are well-established in medical imaging: VGG16 and VGG19 for their simple deep-layered
design; ResNet-50 for its residual connections that stabilize gradient flow in deep networks; and DenseNet-169 for
its dense connectivity, which promotes efficient gradient propagation and reduces parameter count. All models were
initialized with pretrained ImageNet weights and fine-tuned for the multi-class classification task. Experiments were
conducted using Google Colab with an NVIDIA Tesla P100 GPU. A batch size of 16 was used to balance memory
constraints and convergence stability. Models were trained for 50 epochs using the Adam optimizer and a learning
rate of 1 x 1074, To ensure generalizability across all classes, stratified 5-fold cross-validation was applied throughout.
Model performance was evaluated using accuracy, precision, recall, F1-score, and area under the receiver operating
characteristic curve (AUC). Emphasis was placed on per-class F1-scores—especially for URTT and bronchiectasis—to
verify the effectiveness of augmentation. Computational efficiency was also assessed based on inference time, number of
parameters, and training duration. This methodology ensures reproducibility, fair model comparison, and relevance for
clinical applications, especially in low-resource settings where computational overhead is a key constraint.

4. Results and Discussion

The evaluation of VGG16, VGG19, ResNet-50, and DenseNet was conducted using a consistent training setup and
validated through stratified 5-fold cross-validation. Model performance was assessed based on accuracy, precision,
recall, Fl-score, and computational efficiency. Among the evaluated architectures, DenseNet demonstrated superior
performance, achieving a classification accuracy of 99.8% and an Fl-score of 0.998, while maintaining a compact
architecture with only 20 million parameters. It exhibited consistent and balanced performance across all classes,
including underrepresented categories. ResNet-50 followed closely, offering a favorable trade-off between accuracy
(96%) and inference speed, rendering it suitable for real-time clinical applications. In contrast, VGG16 and VGG19
delivered moderately high classification accuracies (approximately 90-93%) but were significantly less efficient in terms
of computational demand. As shown in Figure 1, the comparative analysis of these two models highlights their high
parameter counts and prolonged training durations. Despite their classification capability, their excessive resource
requirements limit their practical deployment in constrained environments.

Performance of VGG16
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100 4 100 4
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Figure 1: Comparison of VGG architectures: (a) VGG16 and (b) VGG19.

As shown in Figure 2, the ResNet-50 balanced model depth with reasonable computational load outperforms the
VGG models in both efficiency and class-wise generalization. DenseNet, visualized in Figure 3, provided the best
trade-off across all evaluation dimensions, particularly excelling in low-resource feasibility due to its compact parameter
footprint and high performance. A consolidated comparison of all models is presented in Figure 4, showing trends in
accuracy, computation time, and model size. DenseNet maintained high accuracy while being six to seven times more
efficient in parameter usage compared to VGG models. ResNet-50 was the fastest during inference, but with slightly
reduced accuracy on minority classes.
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Figure 4: Comparative performance of CNN models in terms of accuracy, computation time, and parameter count.

27




Data augmentation had a measurable impact on minority class performance. The bronchiectasis class F1-score
increased from 0.48 to 0.72 after applying SMOTE and geometric transformations. URTI recall improved by 18%
due to the inclusion of rotation-based augmentation. DenseNet demonstrated greater resilience to class imbalance,
maintaining over 91% accuracy across all four categories, while VGG19 showed a 7.4% drop in rare-class accuracy.
In terms of clinical integration, DenseNet’s sensitivity (99.8%) and parameter efficiency make it ideal for mobile
diagnostic tools and telemedicine platforms. ResNet-50’s shorter inference times position it well for real-time decision
support systems. VGG-based models, although effective in classification, are best suited for offline analysis or feature
extraction in well-equipped environments due to their size and resource needs. In summary, DenseNet is the most
resource-efficient and accurate model for URTT classification, with strong potential for real-world implementation in
constrained healthcare settings. ResNet-50 is also practical for deployment in latency-sensitive clinical environments,
while VGG models offer baseline reliability for infrastructure-rich facilities.

5. Conclusion

This study was undertaken to compare and evaluate different deep learning models for the classification of upper
respiratory tract infections using chest X-ray images. Four CNN architectures—VGG16, VGG19, ResNet-50, and
DenseNet—were selected based on past literature and their reported success in medical image analysis. Among the
models tested, DenseNet showed the highest accuracy and required fewer parameters, which makes it better suited for
areas where computing resources are limited. ResNet-50 also performed well and can be used in real-time applications
due to its faster processing. The VGG models, although accurate, had higher computational costs and longer training
times. Efforts were also made to handle class imbalance in the dataset. Data augmentation and SMOTE helped in
improving the detection of underrepresented classes like bronchiectasis. These steps ensured that the models do not
become biased toward the majority classes and perform well across all categories. The work can be extended in several
directions. First, there is a need to test these models in actual clinical settings to confirm their usefulness. Second,
combining image data with patient information such as medical history and symptoms may improve prediction. Third,
simplified versions of these models can be developed so that they can be used on mobile or edge devices in rural or
low-resource areas. Lastly, it is important to consider the ethical aspects, such as data privacy and explainability of
the model outputs. Training of medical staff on how to use Al tools in a proper way will also help in their smooth
integration into hospital systems. In summary, this research has shown that DenseNet is a good choice for URTI
classification when both accuracy and resource efficiency are required. ResNet-50 may be used where a fast response is
needed. Further studies and real-world trials will be necessary to confirm these results and to make these systems
usable in everyday healthcare practice.
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Abstract

The integration of fiber-reinforced polymer (FRP) composites with metal components in aerospace and automotive
structures presents significant mechanical and design challenges, especially when conventional bolted joints induce
fiber disruption and delamination. This mini review provides a comprehensive evaluation of emerging mechanical
joining techniques developed to address these limitations. Key approaches discussed include self-piercing and friction
riveting, mechanical clinching, non-adhesive form-locked joints, pin and loop joining, and recent advances enabled
by additive manufacturing technologies. Each technique is examined in terms of joining mechanism, material
compatibility, process constraints, and structural performance. Additionally, the role of nanofiber reinforcement in
enhancing the interlaminar toughness of composite laminates is explored, emphasizing its effect on joint durability
and resistance to failure. Comparative insights are offered on joint reversibility, complexity, galvanic behavior, and
suitability for thermoplastic and thermoset matrices. Despite notable progress, most advanced joining strategies
still face practical hurdles related to manufacturability, scalability, and long-term environmental durability. The
review highlights that minimizing fiber damage often entails increased process complexity and cost. Therefore,
future directions should focus on developing standardized evaluation protocols, optimizing additive manufacturing
for multi-material interfaces, and integrating nanoscale reinforcements to achieve structurally robust, lightweight,
and corrosion-resistant hybrid assemblies. This synthesis serves as a technical guide for engineers and researchers
aiming to design next-generation composite—metal joints for high-performance applications.

Keywords: Composite—metal Joints; Additive Manufacturing; Fiber Reinforcement; Mechanical Joining; Hybrid
Structures

1. Introduction

The integration of fiber-reinforced polymer (FRP) composites with metallic components is increasingly critical in
aerospace and automotive industries due to the need for lightweight, high-performance hybrid structures. However,
the conventional application of bolted joints in composite assemblies introduces several disadvantages, such as fiber
disruption, delamination, and elevated stress concentrations [1-3]. These issues undermine structural integrity and
reduce fatigue life. In response to these challenges, alternative mechanical joining techniques have been developed
to improve compatibility with composite architectures and to optimize joint performance. Prominent among these
techniques are self-piercing riveting (SPR), friction riveting (FR), mechanical clinching, pin-and-loop joining, and
adhesive-free form-locked joints [4—6]. These methods aim to enhance joint strength, minimize material degradation,
and streamline assembly operations. While certain techniques, such as SPR and clinching, have achieved commercial
viability in automotive applications, others—such as pin-and-loop joining—remain under experimental investigation.
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These joining approaches differ in terms of reversibility, manufacturing feasibility, added weight, and their applicability
to thermoset or thermoplastic matrix systems [7, 8]. This mini-review presents a synthesis of current mechanical joining
strategies for FRP-metal interfaces. The review outlines their underlying principles, benefits, limitations, and key
experimental findings. The objective is to inform materials engineers and structural designers in selecting suitable
joining techniques based on specific performance requirements, damage tolerance, and manufacturing constraints.

2. Riveted Joints

Riveted joints are among the most established mechanical fastening methods and continue to be widely used in
structural applications within the aerospace and automotive industries. However, the implementation of traditional
riveting in fiber-reinforced polymer (FRP) composites presents significant challenges. The process typically requires hole
drilling, which may induce matrix cracking, fiber breakage, and delamination, thereby compromising the mechanical
integrity of the composite assembly [1-3]. To mitigate these issues, advanced variants such as self-piercing riveting
(SPR) and friction riveting (FR) have been introduced. These methods are engineered to minimize or eliminate the
need for pre-drilled holes, thereby reducing stress concentrations and material damage. Additionally, SPR and FR have
demonstrated improved joint reliability and mechanical performance in hybrid FRP-metal structures [7, 4].

2.1. Self-Piercing Riveting (SPR)

Self-piercing riveting (SPR) is a mechanical fastening technique that facilitates the joining of two or more sheets of
similar or dissimilar materials without the need for pre-drilled holes. In this process, a semi-tubular rivet is driven into
the material stack, penetrating the upper layers and flaring within the bottom layer to form a mechanical interlock.
The SPR technique eliminates pre-drilled holes by plastically deforming the rivet into a mechanical interlock with the
bottom layer, as illustrated in Fig. 1.

| |

= = =

| | |
|

hd
(1

Figure 1: Self-Piercing Riveting (SPR): Schematic of the joining process and a cross-sectional view of a dissimilar
material joint.

This method is particularly beneficial for hybrid joints involving fiber-reinforced polymers (FRPs) and metals,
as it eliminates the need for drilling and thereby preserves the structural integrity of the composite material [9, 4].
SPR has been extensively adopted in the automotive sector and is increasingly being applied in aerospace and other
high-performance fields. Displacement of composite plies without visible delamination in FRP-metal assemblies has
been reported, suggesting a favorable stress distribution mechanism. Strong mechanical joints between polyamide-based
composites and aluminum substrates have also been demonstrated, supporting the suitability of SPR for thermoplastic
matrix composites [10]. The geometric design of the rivet and die significantly influences joint quality. Parameters
such as rivet diameter, head geometry, and die cavity profile have been shown to affect the mechanical interlock and
load-bearing capacity [11|. Fatigue testing of SPR joints indicates improved durability with optimized rivet head
configurations [12]. A detailed cross-sectional analysis of SPR in CFRP laminates reveals the rivet flare geometry,
residual thickness (tmin), and key load-bearing features (Fig. 2). Hybrid joints combining SPR with adhesives have
exhibited enhanced shear strength and energy absorption [13]. Despite its advantages, SPR has certain limitations. The
joints are generally irreversible, and galvanic corrosion may occur when dissimilar materials are joined. Furthermore,
under cyclic loading or in aggressive environments, minor delamination or micro-cracking may still develop, potentially
affecting long-term durability.
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Figure 2: Cross-sectional insight into Self-Piercing Riveting (SPR) joining of Carbon Fiber Reinforced Plastic (CFRP)
laminate: Photographic and schematic representation showing residual thickness (¢min) and stress directions.

2.2. Friction Riveting (FR)

Friction riveting (FR) is a thermomechanical joining technique primarily designed for thermoplastic composites, wherein
a rotating metallic rivet is inserted into a polymeric base, generating heat through friction. This heat softens the
polymer, allowing the rivet to plastically deform and anchor into the matrix, thereby forming a mechanical interlock.
The process eliminates the need for pre-drilled holes, adhesives, or additional fasteners [7]. FR is particularly effective for
joining thermoplastic matrix composites to metallic substrates. Experimental studies have shown that higher rotational
speeds enhance pull-out strength, while controlled temperatures help minimize thermal degradation [14]. Strong and
stable joints have been achieved between glass fiber-reinforced polyester composites and metallic rivets, demonstrating
high mechanical performance with limited thermal impact [15]. An evolution of this technique, known as Friction Stir
Blind Riveting (FSBR), has been applied to carbon fiber-reinforced plastic (CFRP) and aluminum alloy (AA6111)
joints, confirming robust interfacial bonding and effective load transfer in brittle laminates [16]. Further research has
indicated that threaded titanium rivets can achieve joint strengths up to 199 MPa in glass fiber laminates, surpassing
those of conventional bolted joints. In short carbon fiber-reinforced polyether ether ketone (PEEK), pull-out strengths
of 10.7 kN have been reported, with deformation modes such as rivet mushrooming—observed at approximately
70% deformation—indicating efficient energy absorption [15]. Despite its advantages, FR is inherently irreversible
and limited to thermoplastic systems. Precise thermal control is essential to prevent degradation of the polymer,
especially at elevated speeds or during prolonged friction cycles. Nonetheless, due to its efficiency, mechanical reliability,
and compatibility with automated processes, FR presents a promising solution for advanced composite-metal joining
applications.

3. Mechanical Clinching

Clinching is a mechanical fastening process that joins sheet materials through localized plastic deformation, forming a
mechanical interlock without the need for auxiliary elements such as rivets or adhesives. Originally developed for ductile
metals, this technique has been adapted for joining fiber-reinforced polymer (FRP) composites to metals through the
use of modified tool geometries and thermal assistance |5, 8]. In hybrid structures, the more malleable metal sheet is
typically placed on the punch side, enabling it to deform into the composite layer, which may require localized softening
to avoid brittle fracture and delamination. Thermal assistance, including thermo-clinching and induction heating, is
often employed for this purpose. Although the process is irreversible, it is rapid, cost-effective, and well-suited for
lightweight structural applications, particularly with thermoplastic matrix composites [17]. Investigations into the
influence of tool geometry and composite thickness have shown that parameters such as punch diameter, corner radius,
and die depth significantly affect joint integrity and strength. Various die configurations—including round grooved, split,
and flat dies—have been found to influence material flow and mechanical entrapment behavior [18].Different clinching
die geometries—such as round split, grooved, flat, and rectangular shear—are shown in Fig. 3, each contributing
uniquely to material flow and joint strength.
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Figure 3: Clinching dies: (a) round split; (b) round grooved; (c) round flat; and (d) rectangular shear.

A variation known as Injection Clinching Joining (ICJ) involves softening a polymeric stud and pressing it into a
pre-formed hole, creating a form-locked joint upon cooling. This method has demonstrated enhanced load-bearing
capacity while limiting material degradation [19]. The evolution of the ICJ process is illustrated in Fig. 4, showing
thermal softening and subsequent mechanical interlock formation in a time-sequenced manner. Another development,

Figure 4: Stepwise evolution of the Induction Clinching Joining (ICJ) process: (a) tool approach to pre-assembled
parts, (b) hot case heating the stud on polymer-based part, (c) piston applying forming pressure on the stud, and (d)
joined part.

friction-assisted clinching, has reduced the joining force required but occasionally led to pull-out failures under tensile
loads. Hybrid approaches that integrate clinching with friction stir welding have also been explored. Typical failure
modes in friction stir welded hybrid joints include shearing of surface protrusions and interfacial separation between
sheets, as shown in Fig. 5. These combinations improve interfacial bonding and reduce residual stresses in joints between
aluminum sheets and self-reinforced polypropylene [17]. Nonetheless, issues such as delamination, fiber misalignment,
and limited applicability to thermoset composites continue to hinder broader adoption of clinching in FRP-metal
hybrid structures.
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Figure 5: Unraveling failure modes in friction stir welded specimens: (a) shearing of protrusions, (b) sheets separation.

4. Non-Adhesive Form-Locked Joints

Traditional bolted joints in composite structures often induce detrimental effects such as fiber pull-out, matrix cracking,
and delamination, particularly during the drilling process. To overcome these limitations, a novel non-adhesive
form-locked joint configuration has been developed, utilizing metallic inserts to create a mechanical interlock with the
composite laminate without the use of adhesives or bolts [5]. This design enhances joint strength while minimizing
structural damage. The method has been successfully employed in the construction of composite gliders and motogliders,
including models such as the PW-5, PW-6, and AOS-71. The process involves embedding a metal ring into a pre-formed
hole within the composite laminate, thereby distributing mechanical loads across a broader area and reducing stress
concentrations [20]. Experimental investigations have reported tensile static strengths ranging from 60 to 70 kN.
Post-failure analyses using computed tomography scans revealed matrix cracking and localized delamination as primary
failure mechanisms, confirming the technique’s effectiveness in controlling stress distribution and resisting mechanical
degradation. Despite these advantages, the incorporation of metallic rings introduces added complexity and weight.
Moreover, the combination of dissimilar materials poses potential issues related to galvanic corrosion [9]. Nevertheless,
non-adhesive form-locked joints represent a promising solution for aerospace and automotive applications that demand
robust and damage-tolerant composite-metal connections. Their ability to preserve laminate integrity while delivering
high load-bearing capacity underscores their value in the advancement of hybrid joining technologies.

5. Pin Joining

Pin joining involves embedding metallic pins, protruding from a metal adherend, into fiber-reinforced polymer (FRP)
composites to establish a three-dimensional mechanical interlock between dissimilar materials. These pins, typically
manufactured using Selective Laser Melting (SLM) or Powder Bed Fusion (PBF), are positioned prior to composite
curing. During the fabrication process, reinforcing fibers are molded around the pins, producing robust through-
thickness reinforcement [21, 22]. Figure 6 illustrates the comparative geometries of cylinder and ball-head pins used in
composite-metal joints, highlighting their influence on mechanical anchoring and interfacial strength.

(a) Cylinder Pins (b) Ball-head Pins

Figure 6: Comparative shapes of metal pins: (a) cylinder and (b) ball-head, unveiling varied configurations in
composite-metal pin joints.
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Studies on pin pull-out behavior in hybrid metal-composite specimens have shown that single-pin configurations
provide interfacial strengths approximately 3.5 times greater than those of conventional carbon-fiber z-pins. Multi-
pin arrangements demonstrated a 365% improvement in Mode I fracture toughness, with finite element models
accurately predicting mechanical responses without the need for recalibration [21]. Recent investigations into pin
geometries produced via laser powder bed fusion (LPBF) revealed that optimized micro-pin shapes enhance pull-out
strength and energy absorption while limiting fiber damage in carbon—epoxy laminates [22]. Additional research has
confirmed that SLM-fabricated titanium pins, embedded within CFRP layers, substantially increase load-bearing
capacity. These joints exhibit superior metal-composite adhesion and greater resistance to failure than unpinned or
adhesive-only configurations [23]. Overall, joint performance is strongly influenced by pin geometry, surface texture,
material compatibility, and the precision of additive manufacturing processes.The impact of geometric configuration on
interfacial strength is exemplified by the distinct profiles of wedge-shaped and cylindrical pins, as shown in Fig. 7. Pin

Figure 7: Profiles of different pin shapes: (a) wedge-profiled and (b) cylindrical, showing layout density and dimensional
details for composite-metal joint interfaces.

joining offers notable benefits such as enhanced damage tolerance and residual strength, achieved through distributed
load paths and effective fiber bridging. Nevertheless, challenges remain, including high manufacturing costs, galvanic
corrosion risks, and the need for precise insertion techniques to prevent micro-cracking within the composite structure.

6. Loop Joining

Loop joining is an emerging mechanical technique designed for connecting carbon fiber-reinforced polymer (CFRP)
composites to aluminum substrates. This approach involves the integration of metallic or fiber-based loops into the
aluminum surface through welding or casting. The open ends of these loops are subsequently threaded with composite
fibers, forming a mechanical interlock upon resin consolidation [5, 24]. To address the galvanic corrosion commonly
observed in aluminum—CFRP hybrids, transitional materials such as titanium, glass, or boron are introduced to mitigate
electrochemical potential mismatches [5]. One notable implementation—the “wire loop” concept—utilizes laser- or
conduction-welded titanium loops affixed to aluminum substrates. Composite fiber rovings are threaded through the
loops, preloaded, and embedded in resin. Static tensile tests have reported strengths of approximately 3,000 N for
three-loop configurations and 8,000 N for five loops, with failures typically occurring via loop fracture rather than
composite delamination [5]. Further studies have verified this technique using 0.8 mm titanium loops laser-joined to
aluminum, followed by composite embedding. Observed failure consistently occurred in the loop alloy prior to composite
separation [5]. Additional developments have employed glass fiber loops to reduce weight and improve corrosion
resistance; however, mechanical performance data for these configurations remain limited [5]. Another variation
incorporated titanium foil loops bonded within a groove on the aluminum surface, creating a hybrid Al-Ti-CFRP
laminate.Figure 8 illustrates three joining strategies—loop, foil, and fiber concepts—used for integrating CFRP to
aluminum, each addressing mechanical anchoring and galvanic isolation in different ways. Tensile strength data for this
configuration also remain insufficient [5|. Despite its innovative interlocking potential and inherent galvanic isolation,
loop joining faces several limitations. These include a complex, labor-intensive manufacturing process, relatively low
joint strength, and failure modes concentrated within the loop element. Consequently, this technique remains in the
experimental phase and requires further refinement for broader industrial adoption.

7. Additive Manufacturing

Additive manufacturing (AM) techniques such as Selective Laser Melting (SLM), Laser Metal Deposition (LMD), and
Cold Metal Transfer (CMT) provide advanced capabilities for fabricating pin arrays and interlocking structures directly
onto metallic substrates for composite-metal joints. These technologies offer precise control over geometry, surface
texture, and material transitions, enabling enhanced mechanical interlocking and improved damage tolerance [25, 26].
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Figure 8: Concepts of joining CFRP to aluminum by (left) wire loops, (middle) foil inserts, and (right) fiber bridging.
Abbreviations: CF—Carbon Fiber, GF—Glass Fiber, Ti—Titanium, Al-——Aluminum, EP—Epoxy.

SLM and LMD support the creation of complex, high-density microstructures on aluminum and titanium surfaces
with fine resolution, promoting improved pull-out strength through enhanced interlock and fiber engagement within
composite layups [26]. Micro-pin anchors fabricated using laser powder bed fusion (LPBF) have demonstrated increased
pull-out strength with minimal fiber disruption in composite materials [22]. Cold Metal Transfer (CMT)-based Wire
Arc Additive Manufacturing (WAAM) allows for scalable production of larger pin and stud arrays via controlled metal
deposition. These structures form effective mechanical interlocks for overmolded composite layers and are adaptable
to various interfacial and thickness requirements [27]. CMT-deposited pins with adjustable heights ranging from
2.5 mm to 15 mm enable flexibility for diverse joint designs [28]. Hybrid AM approaches that combine metal and
polymer processing—such as powder-bed fusion with fused filament fabrication—have been used to fabricate integrated
metal-composite assemblies. A representative hybrid system used for additive manufacturing of metal-polymer joints
is shown in Fig. 9, combining powder spraying and filament extrusion for integrated part fabrication.
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Figure 9: Printing system developed for additive manufacturing of joined metallic and polymer parts, integrating
powder spray and filament extrusion modules.

Reported interface strengths exceeding 20 MPa for stainless steel-PET laminates highlight the viability of this
approach [29]. Despite these advancements, AM-enabled joint designs face ongoing challenges related to thermal
compatibility, material integration, cost, and cycle time. Nevertheless, AM offers significant potential for engineering
high-performance, tailored metal-composite joints in aerospace and industrial applications.
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8. Mechanical Joining with Nanofiber-Reinforced Composites

Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been extensively utilized to reinforce polymer matrices,
significantly improving interlaminar toughness and out-of-plane strength—properties essential to the performance
of mechanically joined composite structures [30, 31]. These reinforcements delay crack initiation and propagation,
thereby enhancing delamination resistance. Electrospun nanofiber veils interleaved between laminate layers have been
shown to improve both Mode I and Mode II fracture toughness by up to 60%, without increasing structural weight or
complexity near joint areas [32, 30]. The improved fracture resistance enhances tolerance to damage induced by drilling
and mechanical fastening techniques, supporting the durability of joints formed by self-piercing riveting, clinching,
and pin embedding. Despite these mechanical benefits, direct integration methods for combining nanofiber-reinforced
composites with metals remain limited. Current research has primarily emphasized adhesive bonding and laminate-level
enhancements. As a result, repurposing existing mechanical joining strategies for use with nanofiber-toughened
composites appears to be the most viable near-term approach for achieving improved durability and mechanical
resilience in hybrid structures.

9. Conclusions

This mini-review synthesized current advancements in mechanical joining techniques for hybrid metal-composite
structures. Self-piercing and friction riveting offer significant advantages over conventional riveting by minimizing
damage, although they are limited by irreversibility and, in the case of friction riveting, by compatibility with
thermoplastic matrices. Mechanical clinching enables efficient, bolt-free joints with moderate damage control, primarily
benefiting thermoplastic composites. Non-adhesive form-locked joints provide high-strength, reversible connections
using metallic inserts but introduce added weight and design complexity. Pin and loop joining techniques, although
promising due to their superior mechanical interlocks, are still under experimental development and require optimization
in terms of manufacturability and corrosion resistance. Additive manufacturing enhances joint design by enabling
complex interlocking pin geometries tailored to specific interfaces, yet cost and scalability remain hurdles. Lastly, the
integration of nanofiber-reinforced composites significantly improves interlaminar strength and delamination resistance,
suggesting potential for enhanced joint durability, though current joining techniques require further adaptation to fully
leverage these materials. In summary, the trade-off between reducing damage and increasing process complexity remains
a central challenge. Future research should focus on standardizing testing protocols, refining additive manufacturing
applications, and integrating nanomaterial technologies to develop robust, scalable, and corrosion-resistant joints for
demanding aerospace and automotive environments.
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Abstract

Wearable health monitoring devices play a critical role in real-time patient care, but their reliance on cloud-based
services introduces significant security and privacy challenges. This study presents a blockchain-integrated security
framework that combines decentralized authentication, smart contract automation, and end-to-end encryption to
ensure the secure transmission and access of health data. Unlike traditional centralized systems, the framework
uses a permissioned blockchain to log authentication and access events immutably, while smart contracts govern
role-based permissions without manual oversight. The system was evaluated in a simulated environment with
wearable devices and cloud infrastructure. Results demonstrate low-latency performance, high authentication
accuracy, robust anomaly detection, and resilience against replay and spoofing attacks. This framework offers a
scalable and transparent approach to strengthening data protection in digital healthcare systems.

Keywords: Blockchain Security; Cloud Authentication; Wearable Health Devices; Smart Contracts; Healthcare IoT;
Anomaly Detection

1. Introduction

Wearable technologies have become integral to modern healthcare, facilitating continuous, non-invasive monitoring
through devices such as smartwatches, fitness trackers, and medical-grade sensors. These technologies capture real-
time physiological metrics—including heart rate, oxygen saturation, physical activity, and sleep patterns—enabling
timely feedback for patients and healthcare providers, thereby supporting preventive care, diagnosis, and treatment
optimization [1, 2]. To manage the high volume of data generated by these devices, cloud computing platforms
offer scalable, high-capacity, and ubiquitous access for data storage and processing. However, integrating wearable
systems with cloud infrastructure introduces significant risks concerning the security and privacy of sensitive health
data [3, 4]. Limitations in computational power within wearable devices restrict the implementation of resource-intensive
cryptographic protocols, increasing susceptibility to cyberattacks [5]. Additionally, reliance on centralized authentication
models results in single points of failure, where a breach can compromise the entire ecosystem. Blockchain technology
has emerged as a viable alternative to address these challenges. By utilizing decentralized consensus mechanisms,
cryptographic verification, and immutable ledgers, blockchain enhances data integrity, confidentiality, and system
transparency [6, 7]. It also supports distributed identity management and verifiable audit trails, reducing reliance on
human intervention and bolstering accountability [8, 9]. Recent studies have also explored blockchain’s applicability
beyond terrestrial 10T, including its role in securing drone-based healthcare data exchanges [10] and in emerging
metaverse and 6G-enabled health monitoring environments where anomaly detection is critical [11]. This study proposes
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a blockchain-enhanced security framework designed for cloud-based authentication in wearable health monitoring
systems.

The framework incorporates smart contracts to automate access control and enforce cryptographic authentication
policies. These contracts ensure that only authorized users can access or modify sensitive health data, while concurrently
recording access events immutably on the blockchain. Unlike conventional centralized systems, the proposed model
distributes the authentication workflow, thereby eliminating single points of failure and supporting real-time anomaly
detection and mitigation. The novelty of this research lies in the integration of blockchain’s immutable architecture
with the dynamic capabilities of cloud computing to deliver a scalable, secure, and privacy-preserving solution for
healthcare applications. This contribution addresses key vulnerabilities in current systems while aligning with emerging
demands for resilient and trustworthy digital health infrastructures.

2. Related Work

The integration of blockchain and Internet of Things (IoT) technologies has emerged as a promising direction for
enhancing the security, privacy, and decentralized control of healthcare systems. Several studies have proposed hybrid
frameworks that combine blockchain with complementary technologies such as fog computing, machine learning,
and lightweight cryptography to address the unique challenges of health data management. Idrissi and Palmieri [§]
developed an agent-based blockchain model to enable secure authentication and authorization in IoT-based healthcare
systems. Their use of attribute-based access control and decentralized identity management reduces reliance on central
authorities, mitigating single-point failures and supporting verifiable, auditable data exchanges. Awasthi et al. [12]
proposed a machine learning-based device-to-device (D2D) communication scheme for secure e-health systems, which
improves classification accuracy and real-time responsiveness through feature selection. Pathak et al. [5] highlighted
the vulnerabilities of cloud-integrated IoT systems and recommended Al-driven adaptive safeguards for preventing data
breaches. Similarly, Ksibi et al. [13] introduced a quantified cybersecurity risk assessment framework that systematically
identifies and mitigates threats within e-health infrastructures. Pal et al. [14] contributed a fog-enabled architecture for
healthcare intelligence that relocates computation closer to IoT devices, thereby reducing latency and enhancing privacy.
In parallel, Gupta et al. [1] proposed a blockchain-based data management model for healthcare IoT, focusing on
scalable privacy-preserving mechanisms. Altherwi et al. [3] presented a hybrid optimization approach to secure e-health
systems using blockchain and cloud resources. Ray et al. [4] demonstrated the utility of digital locker systems based on
distributed ledgers to fortify mobile health environments. To address resource constraints, Pandey and Bhushan [9]
explored lightweight cryptographic solutions tailored for low-power IoT devices. Al-Ghuraybi et al. [6] provided a
comprehensive review of integrating machine learning with blockchain to improve Medical Cyber-Physical Systems.
Rastogi et al. [7] proposed a blockchain architecture with advanced access control for verifying health data using
ORAP methods. Expanding on these contributions, Patil et al. [15] designed a blockchain-based privacy-preserving
framework to counter cyberattacks in healthcare big data systems. Garg et al. [16] introduced a performance-evaluated
blockchain-powered remote patient monitoring system to enhance medical responsiveness. Atiewi et al. [17] developed
a three-factor authentication and access control mechanism leveraging Ethereum blockchain for secure smart home
healthcare environments. K. K et al. [18] examined evolving trends in signeryption protocols specific to Wireless
Body Area Networks (WBAN), aiming to optimize data confidentiality and computational efficiency. Balakrishnan
and Rajkumar [19] proposed an enhanced mayfly-based clustering algorithm integrated with deep Q-learning for
efficient routing in IoT-driven healthcare monitoring networks. Harbi et al. [10] contributed a systematic review
exploring blockchain’s potential to secure Internet of Drones applications in medical contexts. While these works have
significantly contributed to the development of secure healthcare systems, several of them maintain partial reliance on
centralized entities or lack comprehensive support for continuous anomaly detection and real-time identity validation.
The framework proposed in this study addresses these gaps by delivering a fully decentralized, permissioned blockchain
model. It incorporates smart contracts for automated access control and supports robust, scalable authentication
through multi-factor verification and immutable audit logging, positioning it as a comprehensive solution for wearable
health monitoring environments.

3. Proposed Methodology

3.1. System Overview

The proposed security framework combines wearable health monitoring devices, blockchain, cloud infrastructure, and
smart contracts to enable secure and decentralized authentication. This architecture is composed of wearable sensors
that collect real-time physiological data, a cloud server that stores and processes encrypted health records, a blockchain
network for recording transactions and authentication events, and smart contracts that automate identity verification
and enforce access control. Each wearable device is registered on the blockchain with a unique identifier and associated
cryptographic key pair. When new data is generated, the system requires users to complete multi-factor authentication
(MFA), and the authentication event is immutably recorded on-chain. Smart contracts validate user credentials and
authorize data access based on pre-configured permissions.
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This decentralized design aligns with security models proposed by Idrissi and Palmieri [8], who utilized agent-based
blockchain structures for secure authentication, and Pal et al. [14], who demonstrated latency-reduction and enhanced
security using fog-based IoT healthcare architectures.

3.2. Workflow Description

As shown in Figure 1, the framework begins by collecting health metrics from wearable devices. The system enforces
MFA to validate users before any data transmission. Once authentication is confirmed, user and device identities are
cross-verified with blockchain records. Successful validations allow users to access encrypted data via the cloud, while
all activities—both authorized and denied—are immutably logged to the blockchain ledger for traceability. The system
also includes a monitoring engine that continuously analyzes behavioral patterns to identify anomalies or intrusion
attempts, contributing to proactive threat mitigation as previously discussed by Pathak et al. [5].

Start

Collect Health Data ~ Data collected from wearable devices
Authenticate User ——— Multi-Factor Authentication
Validate with Blockchainl B Check against blockchain records. )
Log Authentication Attempt
Access Health Data " secure access to data )
Monitor for Anomalies Continuous monitoring for security threats
End |

Figure 1: Blockchain-Enhanced Security Framework: High-level authentication and monitoring workflow.
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3.3. Detailed Access and Monitoring Workflow

The detailed flow, shown in Figure 2, includes conditional logic that guides authentication, access control, and anomaly
monitoring. After a successful MFA, the system generates encrypted health data and logs it with a timestamp and
device ID on the blockchain. A smart contract then determines access eligibility, enforcing strict permissions based on
user role and context. Any irregular behavior triggers alerts, revokes access, and updates the audit trail accordingly.

?

| Collect Health Data from Wearable Devices

Y

User Initiates Authentication

l.Perform Multi-Factor Authentication

¢—ﬁ; ‘Authentication Successful? j

Record User Identity on Blockchain | Reject Access

v

Store Health Data in Cloud |

Y

Encrypt Health Data

Y

Execute Smart Contract for Access Rights '
¢—E. Access Granted? .no—¢

Allow User Access to Health Data | Log Unauthorized Access Attempt

l > < |

[ b . —
e

Y

. Monitor User Activity in Real-Time

.

Perform Anomaly Detection '

v

ye[s. Anomaly Detected? -ﬁ
Trigger Alert Continue Monitoring |

v

Revoke Access |

l > <
®

Figure 2: Detailed system workflow: Authentication, access control, and anomaly monitoring.

Such decentralized validation and enforcement mechanisms reduce the potential for centralized attack vectors and
are consistent with recommendations from Ksibi et al. [13] and Awasthi et al. [12], who emphasize real-time secure
access in healthcare through distributed architectures.
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3.4. Algorithmic Implementation

The framework’s authentication algorithm, presented in Algorithm 1, validates data type and integrity, verifies device
registration, encrypts valid data, and uploads it along with a digital signature to the blockchain. All operations are
logged immutably, creating an auditable history that ensures transparency and non-repudiation. This implementation
reflects principles of data protection, privacy, and cryptographic security relevant to blockchain-enabled healthcare
systems, as identified by Gupta et al. [1] and Ranjan and Kumar [20].

Algorithm 1 Blockchain-Based Authentication for Wearable Health Data

Require: Data packet D, User Public Key PK,, User Private Key SK,, Device ID 1D,
Ensure: Authentication Status AS, Encrypted Data Ep

1: if isValidType(D) then

2: if checkIntegrity(D) then

3: hash « CalculateHash(D)

4: Ep « EncryptData(D, PK,,)

5: if CheckRegistration(IDy) then

6: signature < SignData(hash, SK,,)
7: UploadToBlockchain(hash, Ep, signature)
8: AS < “Authenticated”

9: else

10: AS « “Device not registered”

11: end if

12: else

13: AS < “Data integrity check failed”

14: end if

15: else

16: AS + “Invalid data type”

17: end if

18: return (AS, Ep)

4. Results Analysis

4.1. Simulation Setup

To evaluate the proposed blockchain-enhanced authentication framework, simulations were conducted in a controlled
cloud-based environment that emulated real-world operational dynamics. The system incorporated wearable health
monitoring devices that continuously transmitted biometric data to a permissioned blockchain infrastructure. A
multi-factor authentication mechanism utilizing both biometrics and passwords was employed, while access control was
managed through smart contracts developed in Solidity. The simulated network followed a peer-to-peer architecture
integrating cloud and IoT nodes. Testing spanned a 24-hour period and included three operating scenarios: baseline
conditions, peak load stress, and simulated security breaches. The simulation environment, hardware/software
configuration, consensus protocol, and test parameters are summarized in Table 1.

Table 1: Simulation Parameters

Parameter Description

Simulation Environment Cloud-based platform (e.g., AWS, Azure)

Blockchain Type Permissioned blockchain (e.g., Hyperledger Fabric)

Smart Contract Language Solidity or Chaincode

IoT Device Type Wearable health monitoring devices (e.g., smartwatches, fitness trackers)
Data Types Health metrics (e.g., heart rate, blood pressure, activity levels)
User Authentication Method Multi-factor authentication (MFA) using biometrics and passwords
Consensus Mechanism Practical Byzantine Fault Tolerance (PBFT)

Network Topology Peer-to-peer network with IoT devices and cloud nodes
Simulation Duration 24 hours (real-time data streaming)

Number of Users 100-500 users for testing scalability

Transaction Rate 50-100 transactions per minute

Performance Metrics Latency, throughput, breach incidents, and auth success rate
Security Protocols End-to-end encryption, SHA-256, digital signatures

Testing Scenarios Normal operation, peak load, and simulated attacks
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4.2. Performance Evaluation

Under simulated operational conditions, the framework demonstrated effective responsiveness and scalability. The
average authentication latency, encompassing multi-factor checks and blockchain confirmations, was measured at 200
milliseconds—well within the limits required for real-time health applications. Encryption delays introduced by the use
of a 2048-bit RSA scheme were negligible, averaging 120 milliseconds.

Smart contract execution during each access request averaged 50 milliseconds. The system maintained a throughput
of 80 transactions per minute, confirming its ability to process frequent authentication events typical of continuous
health monitoring workflows.

4.3. Security Resilience

Security robustness was validated through simulated attack scenarios, including spoofing, replay, and man-in-the-middle
intrusions. The system successfully thwarted all unauthorized access attempts. Device spoofing was intercepted through
registration validation checks, while replay attacks were nullified by hash inconsistency detection. The end-to-end
encryption ensured data confidentiality during transmission, and all access attempts—whether successful or failed—were
immutably logged on the blockchain. This immutable audit trail enhances accountability and supports forensic
compliance in healthcare information systems.

4.4. Quantitative Results

Table 2 presents the observed metrics in comparison with expected performance benchmarks. The framework met
or exceeded target values in critical areas such as data integrity validation, authentication success rate, and anomaly
detection precision. System scalability, energy consumption, and response times for MFA and smart contract execution
all fell within optimal operating thresholds, indicating a favorable balance of performance and resource efficiency.

Table 2: Results Analysis

Parameter Simulation Result Expected Outcome
Latency 200 ms < 300 ms
Throughput 80 transactions/min > 50 transactions/min
Authentication Success Rate 98% > 95%
Security Breach Incidents 2 (over 24 hrs) 0
User Satisfaction Score 4.7/5 >4/5
Scalability 500 users supported Up to 1000 users
Data Integrity Verification 100% 100%
Energy Consumption 0.5 kWh/device/day <1 kWh
Avg. MFA Response Time 150 ms < 200 ms
Smart Contract Exec. Time 50 ms < 100 ms
System Downtime 0 hours < 1 hour
Anomaly Detection Rate 95% > 90%
Results Analysis of Blockchain-Enhanced Security Framework
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Figure 3: Results analysis chart for key performance and security metrics of the proposed framework.

45



4.5. Comparative Observations

Compared to conventional centralized authentication architectures, the proposed framework exhibits significant
advantages in resilience, transparency, and data integrity. Although minor latency is introduced by cryptographic and
blockchain operations, this overhead is offset by the enhanced security, immutability, and auditability it offers. These
properties render the framework well-suited for deployment in critical healthcare settings where privacy, reliability, and
real-time processing are essential.

5. Discussion

The simulation results indicate that the proposed blockchain-enhanced framework is technically viable and suitable
for real-time health monitoring applications. Authentication delays consistently remained below 300 milliseconds,
while smart contract execution times averaged 50 milliseconds, well within the acceptable range for latency-sensitive
healthcare systems. A high authentication success rate of 98% and complete data integrity verification demonstrate the
system’s effectiveness in countering common cybersecurity threats, including spoofing, replay attacks, and unauthorized
access. These findings corroborate earlier studies that underscore the benefits of permissioned blockchain in ensuring
low-latency and secure data exchange within healthcare environments [8, 20]. The framework’s architecture adopts
a layered defense approach, combining permissioned blockchain infrastructure with multi-factor authentication to
mitigate both internal and external threats. The inclusion of smart contracts introduces dynamic, condition-based
access control mechanisms that operate autonomously, thereby minimizing operational dependencies and reducing
human error. The system’s 95% anomaly detection rate further underscores its capability to identify and respond to
security threats in real-time—a crucial feature in wearable health monitoring systems. Nonetheless, several limitations
must be acknowledged. The simulation was conducted within a controlled cloud-based environment, which may not
fully reflect the operational variabilities present in field deployments, particularly in bandwidth-constrained or rural
settings. Moreover, while scalability was validated for up to 500 users, the framework’s performance in large-scale
implementations involving thousands of concurrent users and diverse wearable device types requires additional validation.
This observation aligns with broader challenges identified in recent surveys on pandemic-driven patient monitoring
systems, which emphasize the need for scalable, interoperable, and context-aware health infrastructures [21]. Future
research will focus on extending the system’s applicability to heterogeneous, resource-limited environments, including the
integration of mobile edge computing and compatibility with Electronic Health Record (EHR) systems. Enhancements
to the anomaly detection module through machine learning techniques are expected to improve predictive capabilities
and adaptive threat response. Additionally, the adoption of lightweight cryptographic algorithms and optimization
of consensus protocols will be explored to reduce energy consumption and support efficient operation on constrained
wearable devices.

6. Conclusion

This study introduced a blockchain-integrated security framework designed for cloud-based authentication in wearable
health monitoring systems. By leveraging the decentralized and immutable characteristics of blockchain alongside
the scalable capabilities of cloud infrastructure, the proposed framework effectively mitigates key security concerns,
including unauthorized access, data manipulation, and inadequate authentication protocols. The incorporation of smart
contracts facilitates automated access governance and transparent audit trails, thereby enhancing data traceability and
accountability. Simulation results affirmed the framework’s ability to satisfy essential performance criteria, including
minimal latency, a high authentication success rate, and robust anomaly detection. These outcomes suggest that
the framework is well-suited for supporting continuous and secure health data exchange in real-time monitoring
scenarios. Although current validation was performed within a simulated environment, future work will emphasize
practical deployment across diverse and large-scale networks, particularly in resource-constrained and bandwidth-limited
healthcare contexts. As wearable technologies gain prominence in clinical and remote health applications, the adoption
of secure, scalable, and transparent data infrastructures—such as the one proposed in this study—will be instrumental
in ensuring the reliability, privacy, and integrity of next-generation digital healthcare systems.

Declaration of Competing Interests

The authors declare no known competing financial interests or personal relationships.

Funding Declaration

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit
sectors.

46



Author Contributions

Shaharkar Bhushan Bharat: Methodology, Validation, Investigation, Writing — Original Draft; Manoj E. Patil:
Conceptualization, Data Analysis, Writing — Review and Editing

References

(1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

17]

(18]

S. Gupta, P. Chithaluru, T. Stephan, S. Nafisa, and S. Kumar, “Hspbci: a robust framework for secure healthcare
data management in blockchain-based iot systems,” Multimedia Tools and Applications, pp. 1-25, 2024.

L. Khajehzadeh, H. Barati, and A. Barati, “A lightweight authentication and authorization method in iot-based
medical care,” Multimedia Tools and Applications, pp. 1-40, 2024.

A. Altherwi, M. T. Ahmad, M. M. Alam, H. Mirza, N. Sultana, A. A. Pasha, N. Sultana, A. I. Khan, M. M. Alam,
and R. Azim, “A hybrid optimization approach for securing cloud-based e-health systems,” Multimedia Tools and
Applications, pp. 1-36, 2024.

S. Ray, K. N. Mishra, and S. Dutta, “Security enhancements in m-health using distributed ledger technology-based
digital locker system,” International Journal of Information Technology, vol. 16, pp. 4253-4271, 2024.

S. Ray, K. N. Mishra, and S. Dutta, “Security enhancements in m-health using distributed ledger technology based
digital locker system,” International Journal of Information Technology, vol. 16, no. 7, pp. 4253-4271, 2024.

H. A. Al-Ghuraybi, M. A. AlZain, and B. Soh, “Ensuring authentication in medical cyber-physical systems: A
comprehensive literature review of blockchain technology integration with machine learning,” Multimedia Tools
and Applications, vol. 83, no. 12, pp. 35673-35707, 2024.

P. Rastogi, D. Singh, and S. S. Bedi, “An improved blockchain framework for orap verification and data security in
healthcare,” Journal of Ambient Intelligence and Humanized Computing, vol. 15, no. 6, pp. 2853—2868, 2024.

H. Idrissi and P. Palmieri, “Agent-based blockchain model for robust authentication and authorization in iot-based
healthcare systems,” The Journal of Supercomputing, vol. 80, no. 5, pp. 6622-6660, 2024.

S. Pandey and B. Bhushan, “Recent lightweight cryptography (lwc) based security advances for resource-constrained
iot networks,” Wireless Networks, vol. 30, no. 4, pp. 2987-3026, 2024.

Y. Harbi, K. Medani, and C. Gherbi, “A systematic literature review of blockchain technology for internet of
drones security,” Arabian Journal for Science and Engineering, vol. 48, pp. 1053-1074, 2023.

K.-T. Zhu, Y. Wu, R. Yang, and Q. Yuan, “Anomaly detection in metaverse healthcare and fitness: bigdata
analytics using 6g-enabled internets of things,” Wireless Personal Communications, pp. 1-20, 2024.

A. Awasthi, R. Suchithra, A. Chakravarty, J. Shah, D. Ghosh, and A. Kumar, “Machine learning-based d2d
communication for a cloud-secure e-health system and data analysis by feature selection with classification,” Soft
Computing, pp. 1-14, 2023.

S. Ksibi, F. Jaidi, and A. Bouhoula, “A comprehensive study of security and cyber-security risk management
within e-health systems: Synthesis, analysis and a novel quantified approach,” Mobile Networks and Applications,
vol. 28, no. 1, pp. 107-127, 2023.

P. K. Pal, M. Singh, and P. K. Mishra, “Fortified iot-fog framework for enhanced healthcare intelligence,” Multimedia
Tools and Applications, pp. 1-34, 2024.

S. M. Patil, B. S. Dakhare, S. M. Satre, and S. D. Pawar, “Blockchain-based privacy preservation framework for
preventing cyberattacks in smart healthcare big data management systems,” Multimedia Tools and Applications,
pp. 1-20, 2024.

S. Garg, R. K. Kaushal, and N. Kumar, “A novel design and performance assessment of a blockchain-powered
remote patient monitoring system,” SN Computer Science, vol. 5, no. 7, p. 849, 2024.

S. Atiewi, A. Al-Rahayfeh, M. Almiani, A. Abuhussein, and S. Yussof, “Ethereum blockchain-based three factor
authentication and multi-contract access control for secure smart home environment in 5g networks,” Cluster
Computing, vol. 27, no. 4, pp. 4551-4568, 2024.

D. K, N. S, and A. A, “Security analysis and trends in signcryption for wban: A research study,” Peer-to-Peer
Networking and Applications, 2024.

47



[19]

[20]

21]

D. Balakrishnan and T. D. Rajkumar, “Enhanced mayfly with active elite approach clustering based deep q learner
routing with ebrlwe for iot-based healthcare monitoring system,” Multimedia Tools and Applications, vol. 83,
no. 39, pp. 87129-87152, 2024.

A. K. Ranjan and P. Kumar, “Ensuring the privacy and security of iot-medical data: a hybrid deep learning-
based encryption and blockchain-enabled transmission,” Multimedia Tools and Applications, vol. 83, no. 33,
pp. 79067-79092, 2024.

C. Krishna, D. Kumar, and D. S. Kushwaha, “A comprehensive survey on pandemic patient monitoring system:
Enabling technologies, opportunities, and research challenges,” Wireless Personal Communications, vol. 131,
pp. 2125-2172, 2023.

48



	Cover
	Editorial_Vol_4_Iss_2
	1
	Introduction
	Recent Developments and Challenges in AI–Blockchain Enabled Fintech
	AI and Blockchain Applications in Fraud Mitigation
	Challenges and Research Gaps
	Conclusion and Future Scope

	2
	Introduction
	Related Work
	Proposed Methodology
	Assumptions:
	Algorithm: IoT Device Interaction Using Blockchain and Smart Contracts

	Results and Discussion
	Conclusion

	3
	Introduction
	The Knowledge Discovery Process
	Methodology
	Frequent Pattern Mining Techniques
	Association Rule Mining Applications
	Apriori Algorithm: Mechanism and Demonstration
	Challenges and Future Directions
	Conclusion

	4
	Introduction
	Literature Review
	Methodology
	Results and Discussion
	Conclusion

	5
	Introduction
	Riveted Joints
	Self-Piercing Riveting (SPR)
	Friction Riveting (FR)

	Mechanical Clinching
	Non-Adhesive Form-Locked Joints
	Pin Joining
	Loop Joining
	Additive Manufacturing
	Mechanical Joining with Nanofiber-Reinforced Composites
	Conclusions

	6
	Introduction
	Related Work
	Proposed Methodology
	System Overview
	Workflow Description
	Detailed Access and Monitoring Workflow
	Algorithmic Implementation

	Results Analysis
	Simulation Setup
	Performance Evaluation
	Security Resilience
	Quantitative Results
	Comparative Observations

	Discussion
	Conclusion


