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This issue of the Journal of Computers, Mechanical and Management (JCMM) encompasses a selection of research
articles across a range of disciplines, including advanced machining methods, sentiment analysis, and the effects of macroe-
conomic factors on stock prices. Each study presents new perspectives and empirical findings that advance the understanding
in these diverse fields.

The article by Bhat, Tandon [1], and Ahmad explores the optimization of parameters in Abrasive Water Jet Machining (AWJM)
for 316 stainless steel. By examining the effects of traverse speed, standoff distance, and abrasive flow rate, the study demon-
strates how these parameters influence surface roughness. Employing the Taguchi method and analysis of variance, the
authors establish a regression model to predict optimal machining conditions, offering valuable insights for industrial applica-
tions in manufacturing stainless steel components.

Ahmed Shetu [2] provides a comprehensive review of non-destructive testing (NDT) techniques for aerospace composite
materials, crucial for ensuring structural integrity and safety. The study examines methods like ultrasonic testing, infrared
thermography, and eddy current testing, discussing their advantages, limitations, and practical applications. This work high-
lights future directions for integrating machine learning into NDT processes, underscoring its potential to enhance diagnostic
precision and reduce inspection time.

Kulkarni and Kulkarni [3] delve into probability sampling through an experimental study on calculating the value of π using
the Monte Carlo simulation method. Their work employs non-parametric tests, including the Chi-Square and Friedman’s test,
to evaluate the randomness and distribution of simulation results. This research contributes to the field of mathematical
simulations by showcasing practical applications of probability theory in estimating irrational numbers [3].

The study by Malhotra and Sethi [4] conducts sentiment analysis on Twitter data using supervised machine learning algorithms.
The authors implement models such as Naïve Bayes, Decision Trees, and Support Vector Machines to classify tweets into
positive, neutral, or negative sentiments. Their findings indicate that Support Vector Machines achieve the highest accuracy,
offering insights for organizations looking to leverage social media sentiment for decision-making.

Nagvekar et al. [5] analyze the impact of inflation, bond yield rates, and the VIX index on the stock prices of Indian banks across
different market capitalizations. Through regression analysis, they demonstrate how macroeconomic variables affect banks of
varying sizes differently, with small-cap banks exhibiting the most sensitivity to inflation. This study offers valuable guidance
for investors and policymakers by highlighting the interplay between economic indicators and banking stock performance.

This issue reflects the journal’s commitment to publishing impactful research that spans a range of topics, from engineering
and mathematics to data analysis and finance. Each article not only advances theoretical knowledge but also provides practical
implications for industry and academia alike.
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Abstract

Abrasive Water Jet Machining (AWJM) is a non-traditional machining process renowned for its versatility and
ability to cut a wide range of materials precisely. This research article presents an in-depth analysis of the optimization
of AWJM parameters for machining 316 stainless steel, aiming to enhance surface quality and machining efficiency.
Through a comprehensive experimental setup, the study explores the effects of varying the speed, standoff distance
(SOD), and flow rate on the surface roughness (Ra) of the machined workpiece. The Taguchi method’s L9 orthogonal
array is employed to design the experiments, and a signal-to-noise (S/N) ratio analysis, alongside an analysis of variance
(ANOVA), is utilized to discern the most significant machining parameters. Response tables for S/N ratios and means
are created to summarize the effects, and main effects plots are generated to visualize trends in the data. Furthermore,
a regression model is developed to correlate the machining parameters with the surface roughness, which is validated
by a high coefficient of determination. Residual plots and diagnostics for unusual observations are utilized to ensure the
robustness of the model. The study concludes that SOD is the most influential parameter, followed by speed and flow
rate. The optimization results provide a quantitative understanding that can significantly contribute to the industrial
application of AWJM for 316 stainless steel, ensuring optimal surface integrity and operational cost-effectiveness. The
findings of this research offer pivotal insights for manufacturing industries that seek to integrate AWJM into their
production processes.

Keywords: Abrasive Water Jet Machining, Surface Roughness, Optimization, 316 Stainless Steel, Taguchi Method

1 Introduction

Stainless steel 316 is a material known for its excellent corrosion resistance and robust mechanical properties, making it
indispensable in sectors that demand high durability and resilience, such as marine engineering, biomedical devices, and
chemical processing equipment [1, 2]. Despite its widespread use, machining stainless steel 316 can be challenging due
to its high work hardening rate and considerable toughness, often resulting in accelerated tool wear and poor surface
quality [3–5]. These challenges necessitate the exploration of non-conventional machining techniques that can mitigate the
limitations posed by traditional machining. Abrasive Water Jet Machining (AWJM) has emerged as a potent solution,
offering a non-contact and versatile cutting process that circumvents the thermal and mechanical stresses typically
associated with conventional machining methods [6].
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Table 1: Chemical composition of Stainless Steel 316.

Element Composition (%)

Iron (Fe) Balance
Chromium (Cr) 16.0 - 18.0
Nickel (Ni) 10.0 - 14.0
Molybdenum (Mo) 2.0 - 3.0
Manganese (Mn) <2.0
Silicon (Si) <1.0
Carbon (C) <0.08
Phosphorus (P) <0.045
Sulfur (S) <0.03

The core mechanism of AWJM involves a high-pressure jet of water mixed with abrasive particles directed at the
workpiece to effect material removal through erosion. This technique is particularly beneficial for cutting intricate shapes
and handling tough materials like stainless steel 316, as it eliminates thermal distortion and reduces tool wear, while
improving surface quality of the machined surface [7–9]. However, to fully exploit the capabilities of AWJM, it is crucial
to optimize the machining parameters, such as jet speed, standoff distance (SOD), and abrasive flow rate, to achieve the
desired surface integrity and dimensional accuracy. The complexity of the interactions between these parameters and their
effects on the machining outcomes necessitates a systematic approach to their study and optimization [10]. Extensive
research has been conducted in recent times to explore the effects of AWJM parameters on the surface quality and
machining efficiency of various steel. For instance, Singh et al. [11] conducted a study to optimize process parameters
for machining marine grade Inconel using abrasive water jet machining (AWJM) to improve surface properties and
productivity. They applied Taguchi-based Grey analysis to optimize parameters for minimum surface roughness and
higher material removal rate (MRR, identifying standoff distance (SOD), abrasive flow rate (AFR), and jet traverse speed
(JTS) as the most influential parameters. Machining at specific values of SOD, AFR, and JTS resulted in maximum MRR
and minimum surface roughness, with SOD being identified as the most significant parameter. Gawade and Jatti’s [12]
study focused on optimizing process parameters for minimizing taper angle in abrasive water jet machining of 304 stainless
steel. They used response surface methodology, design of experiments, and ANOVA to determine the optimal parameters
(traverse rate, abrasive flow rate, stand-off distance) leading to a high desirability model (0.9195) with validation results
showing low percentage error (<6%) for taper angle. Rammohan’s [13]study on AWJ machining of armour steel highlights
that higher traverse speed and water jet pressure lead to wider kerf width and higher material removal rate. The research
emphasizes the importance of these parameters for achieving optimal machining results, especially in terms of surface
finish and material removal rate.

While the literature provides a solid foundation for understanding AWJM processes, there remains a need for targeted
research that addresses the specific characteristics of stainless steel 316. This study aims to fill this gap by optimizing
AWJM parameters to improve surface roughness and overall machining performance for this material. The study’s
objectives are to identify the most influential AWJM parameters on the surface roughness of stainless steel 316 and to
develop a comprehensive regression model that can predict surface quality based on these parameters. The subsequent
sections of this paper detail the methodology adopted for the experimental design, present the results of the machining
trials and discuss the implications of the findings in the context of the existing literature. By doing so, the study
contributes a nuanced understanding of AWJM parameter optimization for stainless steel 316, with the potential to
inform industrial practices and future research in this domain.

2 Materials and Methods

2.1 Materials

The study employed Stainless Steel 316 (SS316), an austenitic alloy celebrated for its excellent corrosion resistance, high
tensile strength, and robust mechanical properties across a wide temperature range. The choice of SS316 was driven by its
prevalent use in demanding environments such as marine, chemical processing, and pharmaceutical sectors. The alloy’s
composition includes iron, chromium, nickel, and molybdenum, offering superior corrosion and oxidation resistance. The
specific chemical composition sourced from the supplier is detailed in Table 1 to ensure reproducibility and relevance in
industrial applications.

2.2 Equipment Setup

The experimental setup was centered around a high-precision AWJM system. This system comprised a high-power pump
(37 kW) designed to generate a pressurized water stream mixed with abrasive particles directed through a precision-
engineered nozzle. A CNC controller augmented the machine’s cutting capabilities, ensuring meticulous control over the
machining process. Key specifications include a working table dimension and a high-capacity abrasive feeder, facilitat-
ing continuous operation. The selection of SS316 as the workpiece material further underscores the study’s industrial
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relevance.

2.3 Experimental Design Using L9 Orthogonal Array

Adopting the Taguchi L9 orthogonal array, the experimental design was structured to analyze the effects of three piv-
otal AWJM parameters: traverse speed, stand-off distance, and abrasive flow rate. This design choice allowed for a
comprehensive investigation with minimal experimental runs, focusing on efficiency and effectiveness. The parameters
were chosen based on an extensive literature review and preliminary experiments to bridge the gap between theoretical
knowledge and practical application.

2.4 Surface Roughness Measurement

The quantification of surface roughness, a critical quality attribute in machining, was meticulously conducted using a
Surtronic 3+ profilometer. This instrument, known for its precision, measures the texture of machined surfaces through a
diamond-tipped stylus. The procedure involved multiple measurements across different surface areas to ensure accuracy
and reproducibility. Based on these measurements, the calculation of Ra values provides a reliable metric for assessing
the machining process’s impact on surface integrity.

Table 2: L9 Orthogonal Array for AWJM Parameters

Experiment No. Speed [mm/min] SOD [mm] Flow rate [g/min]

1 30 2 200
2 30 5 500
3 30 8 800
4 50 2 500
5 50 5 800
6 50 8 200
7 70 2 800
8 70 5 200
9 70 8 500

3 Results

3.1 Influence of AWJM Parameters on Surface Roughness

The experimental data obtained from the Taguchi L9 orthogonal array are presented in Table 3, which showcases the
interplay between the abrasive water jet machining parameters and the resultant surface roughness (Ra) of the machined
316 stainless steel samples.

Table 3: Experimental Results for AWJM on 316 Stainless Steel

Speed (mm/min) SOD (mm) Flow rate (g/min) Ra (µm)

30 2 200 1.8
30 5 500 2.1
30 8 800 2.5
50 2 500 2.0
50 5 800 2.4
50 8 200 3.0
70 2 800 1.7
70 5 200 2.9
70 8 500 3.2

The data elucidate the effect of traverse speed, stand-off distance (SOD), and abrasive flow rate on the surface
roughness of the material. Initial observations suggest that an increase in SOD and abrasive flow rate tends to correlate
with an increase in Ra, indicating a rougher surface finish. In contrast, higher traverse speeds appear to contribute to a
finer surface finish, as the lowest Ra value was observed at the highest speed of 70 mm/min with a SOD of 2 mm and an
abrasive flow rate of 800 g/min. This trend is consistent with the understanding that higher speeds reduce the interaction
time between the abrasive particles and the workpiece, resulting in a smoother surface. Further statistical analysis was
conducted to quantify these parameters’ effects and identify optimal settings for minimal surface roughness in AWJM of
316 stainless steel.
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3.2 Analysis of Signal-to-Noise Ratios

The Taguchi method’s signal-to-noise (S/N) ratio, which adopts the ”smaller-is-better” characteristic for surface rough-
ness, is utilized to determine the robustness of the AWJM process. The main effects plot for S/N ratios (Figure 1)
indicates the influence of each machining parameter on the quality characteristic. The response table for S/N ratios

Figure 1: Main Effects Plot for S/N Ratios

Table 4: Response Table for Signal to Noise Ratios

Level Speed SOD Flow rate

1 -6.503 -5.245 -7.965
2 -7.722 -7.766 -7.523
3 -7.987 -9.201 -6.724

Delta 1.484 3.956 1.241
Rank 2 1 3

(Table 4) further complements the plot by quantifying the effect of each parameter level. The delta value represents
the range between the highest and lowest S/N ratio for each parameter, indicating its impact on surface roughness. A
higher delta signifies a more significant effect on the quality characteristic. According to the data, the SOD exhibits the
highest delta value, suggesting it is the most influential parameter affecting surface roughness, followed by speed and flow
rate, in that order. This preliminary analysis implies that to achieve a finer surface finish; the SOD should be carefully
controlled, while the speed and flow rate can be adjusted to fine-tune the process.

3.3 Regression Model and Statistical Analysis

The regression model and its summary, presented in Table 5, provide a robust statistical framework for understanding
the relationship between the AWJM parameters and the surface roughness of 316 stainless steel.

Table 5: Model Summary

S R-sq R-sq(adj) PRESS R-sq(pred) AICc BIC

0.158114 94.70% 91.53% 0.491323 79.18% 17.05 -1.96

The Analysis of Variance (ANOVA), detailed in Table 6, highlights the significance of the regression model. The
F-values and P-values indicate that the model terms are statistically significant predictors of surface roughness.

Table 6: Analysis of Variance

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value

Regression 3 2.2350 94.70% 2.2350 0.74500 29.80 0.001
Speed 1 0.3267 13.84% 0.3267 0.32667 13.07 0.015
SOD 1 1.7067 72.32% 1.7067 1.70667 68.27 0.000
Flow rate 1 0.2017 8.55% 0.2017 0.20167 8.07 0.036
Error 5 0.1250 5.30% 0.1250 0.02500
Total 8 2.3600 100.00%
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Unusual observations, potentially outliers or influential points are diagnosed with Cook’s D measure, as shown in
Table 7. A single observation with a high Cook’s D value, observation 7, is excluded from the analysis to improve the
model’s accuracy.

Table 7: Fits and Diagnostics for Unusual Observations

Observation Ra Fit SE Fit 95% CI Resid Std Resid Del Resid HI Cook’s D

7 1.700 1.917 0.124 (1.599, 2.234) -0.217 -2.20 -10.61 0.611111 1.90

Residual plots are instrumental in verifying the assumptions of the regression analysis. As depicted in Figure 2,
the normal probability plot of residuals indicates normality, and the absence of patterns in the residuals versus fits and
versus order plots suggests that the residuals are randomly distributed, satisfying the assumptions of homoscedasticity
and independence.

Figure 2: Residual Plots for Surface Roughness (Ra)

The regression equation, given below, encapsulates the quantitative relationship between the machining parameters
and the surface finish, enabling predictions of surface roughness for given sets of parameters:

Ra = 1.233 + 0.0167× Speed + 0.1778× SOD− 0.000611× Flow rate (1)

This equation, derived from the regression analysis, serves as a predictive model for determining the expected surface
roughness (Ra) for a given combination of AWJM parameters, facilitating the optimization of the machining process.

4 Discussion

The optimization of AWJM parameters for the machining of 316 stainless steel is a complex interplay of process variables
that directly influence the surface roughness of the finished workpiece. The experimental data indicate that both the speed
of the abrasive water jet and the standoff distance (SOD) significantly affect the surface quality, with the flow rate of the
abrasive mixture playing a lesser yet notable role. The physics underlying the AWJM process involves the conversion of
pressure energy into kinetic energy as the water and abrasive mixture exits the nozzle. The abrasive particles, propelled
by the water jet, strike the material surface with significant force, leading to material erosion primarily by micro-cutting
and deformation wear mechanisms. An increase in the traverse speed of the jet results in a reduction of interaction
time between the abrasive particles and the target surface, which tends to produce a finer finish. This is corroborated
by the inverse relationship between speed and surface roughness observed in the experimental data. The kinetic energy
imparted to the abrasive particles is a function of the square of their velocity, as described by 1

2mv2, where m is the mass
of the particles and v is their velocity. Hence, a higher traverse speed translates to increased kinetic energy and a greater
capacity for the particles to deform and erode the workpiece material. The SOD plays a pivotal role in the quality of
the machined surface. With an increased SOD, there is a notable dispersion of the jet, which leads to a decrease in the
energy density as the particles spread over a larger area. This dispersion results in a reduction of the localized impact
forces, hence a diminished erosion efficiency and a rougher surface texture. The experimental results, reflecting the SOD
as the most significant factor, align with the principles of jet dispersion and its impact on the energy delivered to the
target material. The abrasive flow rate determines the number of particles available to erode the material.
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At an optimal flow rate, the balance between particle mass and velocity is maintained, allowing for maximum energy
transfer to the material surface without significant interference from particle collisions or agglomeration. However, if the
flow rate is too high, it can result in a crowding effect, where the particles interfere with each other, reducing the efficiency
of the cutting action. This phenomenon explains the negative coefficient for the flow rate in the regression equation,
suggesting that beyond a certain threshold, an increase in flow rate can adversely affect surface finish. The formation
of surface roughness in AWJM is governed by the mechanics of abrasive particle impact, where each particle acts as a
micro-cutting tool that chips away minute fragments of the material. The quality of the surface finish is therefore a
cumulative effect of these microscopic interactions, which are influenced by the parameters discussed. It is evident from
the analysis that a delicate balance between speed, SOD, and flow rate is required to achieve a surface finish that meets
the stringent requirements of industries employing 316 stainless steel. Understanding the mechanics behind the AWJM
process is critical for its application in industry. The ability to predict the outcome of varying parameters allows for
better control and optimization of the machining process, leading to improved efficiency, reduced costs, and enhanced
quality of the machined parts. The discussion presented here provides a theoretical basis for the observed effects and
underscores the importance of precise control over AWJM parameters to achieve desired machining outcomes.

5 Conclusion

In this study, the optimization of abrasive water jet machining (AWJM) parameters for the machining of 316 stainless
steel was systematically investigated to enhance surface quality. The experimental results and subsequent analysis have
elucidated the significant influence of process parameters on the surface roughness of the machined specimens. The
standoff distance (SOD) emerged as the most impactful factor, followed by the traverse speed of the jet, and lastly, the
abrasive flow rate. These findings are in line with the underlying mechanics of AWJM, where the energy density of
the abrasive particles and their interaction with the workpiece surface determine the machining quality. A higher SOD
was observed to disperse the jet, reducing the energy density and leading to a rougher surface, while a higher speed
reduced the surface roughness due to increased kinetic energy imparted to the abrasive particles. The flow rate’s inverse
relationship with surface roughness underscores the need for a balanced abrasive supply to maintain cutting efficiency.
The regression model developed provides a predictive capability for determining the surface roughness for given machining
parameters, offering a valuable tool for process optimization in industrial applications. Future research may explore the
integration of real-time monitoring and adaptive control systems in AWJM to dynamically adjust parameters and further
improve surface integrity. Additionally, the extension of this study to other materials and the investigation of other
AWJM parameters could provide broader insights into the versatile nature of this machining process.
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Abstract

This study investigates the impact of critical economic factors—namely, inflation, the 10-year bond yield rate, and
the VIX index—on the stock prices of banks operating across different market capitalization segments in India. Through
a comprehensive regression analysis framework, this research quantifies the relationships between these economic factors
and bank stock prices while accounting for potential variances across large-cap, mid-cap, and small-cap banks. Utilizing
data from the past five years, this analysis not only provides a nuanced understanding of how these macroeconomic
indicators influence bank stock prices but also explores the specific effects on banks of varying market capitalizations.
The findings reveal that small-cap companies are predominantly influenced by internal management decisions and
capital allocation, whereas the consumer price index significantly predicts and reflects stock price behavior. Conversely,
the bond yield rate and VIX index show minimal impact on stock prices. This study offers valuable insights for
investors, policymakers, and financial institutions, aiding in the development of informed investment strategies and
risk management practices.

Keywords: Inflation, Ten-Year Bond Yield Rate, VIX Index, Stock Prices, Market Capitalization

1 Introduction

Banking stocks have traditionally offered superior returns compared to broader capital markets, a trend underscored
by historical performance data [1]. However, the interaction between macroeconomic variables and bank stock prices is
complex, especially in emerging economies like India. Inflation, in particular, has been shown to exert a mixed impact
on bank profitability and stock returns, with studies revealing both negative and positive correlations over different time
horizons [1–6]. The significance of interest rates is also well documented, with the ten-year bond yield rate influencing
bank NIFTY returns and indicating that bank stocks’ interest rate risk exposure is closely tied to their core capital-to-
asset ratio and interest spread [3, 7]. Moreover, market volatility, as measured by the VIX Index, suggests a bidirectional
relationship with bank stock prices, affecting overall market returns [8]. Accounting variables such as EPS, ROE, CAR,
NIM, and NPAs, alongside bank-specific factors like size and revenue diversification, emerge as significant determinants
of bank stock prices and performance in India [1, 4, 9]. Notably, the performance divide between private and public
sector banks reveals the influence of ownership structure on profitability [9].
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This backdrop of varying influences on bank stock prices underscores the need for an in-depth analysis that considers
the multifaceted impact of inflation, interest rates, and market volatility across banks of different sizes and ownership
structures [10–12]. The current study aims to fill this gap by providing a comprehensive analysis of these relationships,
thereby contributing to the nuanced understanding of the dynamics at play within the Indian banking sector’s stock
valuation. The findings are poised to offer valuable insights for investors, policymakers, and the banks themselves,
highlighting the critical interplay between macroeconomic indicators and bank stock performance.

2 Methods

This study adopts a quantitative research methodology to examine the relationship between key macroeconomic indicators
and the stock prices of Indian banks, categorized into large, mid, and small-cap based on their market capitalization. The
analysis focuses on three primary macroeconomic indicators: the Consumer Price Index (CPI) as a measure of inflation,
the ten-year bond yield rate reflecting interest rates, and the Volatility Index (VIX) representing market volatility. The
impact of these indicators on the stock prices of selected banks over a specified period is assessed through regression
analysis.

2.1 Data Collection

The dataset comprises monthly observations of the CPI, ten-year bond yield rates, and VIX Index values, alongside the
closing stock prices of a stratified sample of Indian banks. These banks are classified into large, mid, and small-cap
categories, based on their market capitalization, to facilitate a comparative analysis across different bank sizes. Data
were collected from official sources, including the Reserve Bank of India (RBI), Securities and Exchange Board of India
(SEBI), and directly from the stock exchanges where these banks are listed. The study period spans five years, from
January 2015 to December 2019, providing a comprehensive overview of the trends and potential shifts in the relationships
between the variables of interest.

2.2 Statistical Analysis

The study employs multiple regression analysis to explore the relationship between the stock prices of banks and the
selected macroeconomic indicators, as it has been proven quantitative technique for the same in a few prior studies
[13–17]. The regression model is specified as follows:

Stock Priceit = β0 + β1CPIt + β2Bond Yield Ratet + β3VIX Indext + εit

where Stock Priceit represents the closing stock price of bank i at time t, CPIt is the Consumer Price Index at time
t, Bond Yield Ratet is the ten-year bond yield rate at time t, VIX Indext is the Volatility Index at time t, and εit is the
error term.

The model includes bank-specific intercepts to account for unobserved heterogeneity among banks. The analysis is
conducted separately for each bank size category to identify any differential impacts of the macroeconomic indicators on
stock prices. The regression coefficients (β) measure the sensitivity of bank stock prices to changes in each macroeconomic
indicator. Model diagnostics and robustness checks, including tests for multicollinearity, heteroskedasticity, and serial
correlation, are performed to ensure the reliability and validity of the regression results. The R2 and F-statistic are
reported to assess the model’s overall fit and explanatory power.

3 Results

The empirical analysis conducted in this study explores the intricate effects of inflation (as measured by the Consumer
Price Index, CPI), ten-year bond yield rates, and market volatility (as indicated by the VIX index) on the stock prices
of banks across different market capitalizations in India. The results delineate the differential impacts of these macroe-
conomic indicators across large-cap, mid-cap, and small-cap bank stocks, elucidated through regression analysis, R2, and
F -statistics.

3.1 Large-cap Bank Stocks

The analysis of large-cap bank stocks focuses on some of the biggest players in the Indian banking sector, such as HDFC
Bank, ICICI Bank, SBI, Kotak Bank, and Axis Bank. This section examines the influence of the Consumer Price Index
(CPI), Bond Yield Rate, and the Volatility Index (VIX) on the stock prices of these large-cap banks. The regression
coefficients as shown in Table ?? is obtained from the analysis that indicate the extent to which CPI, Bond Value, and
VIX Index impact the stock prices of large-cap banks.
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Table 1: Regression Coefficients computed for selected mid-cap bank stocks

Company Intercept CPI Bond Yield Rate VIX index

HDFC BANK -212.65 13.47 -59.32 -9.96
ICICI BANK -1873.13 14.88 26.73 -3.81
STATE BANK OF INDIA -1222.29 8.06 57.81 -3.24
KOTAK BANK 85.53 0.565 -105.83 -8.11
AXIS BANK -153.91 4.66 37.11 -7.49

The corresponding p-values (Table 2) provide insight into the statistical significance of these coefficients, indicating
how reliably the CPI, Bond Value, and VIX Index can predict the stock prices of large-cap banks.

Table 2: p-value obtained for selected large-cap bank stocks

Large-cap Banks HDFC BANK ICICI BANK SBI KOTAK BANK AXIS BANK

Intercept 0.42 1.05E-15 9.52E-12 0.810 0.530
CPI 8.20E-17 1.69E-27 9.991E-19 4.61E-14 3.918E-05
Bond Value 0.011 0.067 1.48E-05 0.001 0.081
VIX Index 4.11E-06 0.003 0.002 0.003 0.0001

The R2 values and significance F-statistics reported in Table ?? confirm the predictive power and statistical significance
of the regression models applied to large-cap bank stocks. This demonstrates the models’ effectiveness in explaining the
variability in stock prices based on the selected economic indicators.

Table 3: R2 and F computation for selected large-cap bank stocks

Company Significance F R2

HDFC BANK 2.15E-17 0.773
ICICI BANK 2.94E-26 0.893
STATE BANK OF INDIA 8.66E-19 0.798
KOTAK BANK 1.59E-14 0.709
AXIS BANK 1.15E-07 0.475

The findings for large-cap banks reveal a complex interplay between stock prices and macroeconomic indicators.
CPI generally shows a positive correlation, suggesting that inflation may lead to an increase in bank stock prices. The
impact of the Bond Value and VIX Index varies across banks, reflecting the diverse risk profiles and investment strategies
employed by large-cap banks. These results are crucial for investors and financial analysts who seek to understand the
factors driving the stock prices of large-cap banks in India, offering insights into how macroeconomic changes can influence
investment decisions in the banking sector.

3.2 Mid-cap Bank Stocks

The mid-cap segment of the banking sector exhibits a distinct pattern in the impact of macroeconomic indicators on
stock prices. Our regression analysis covers selected mid-cap banks such as AU Bank, IDFC First Bank, Union Bank,
Canara Bank, and Federal Bank, revealing nuanced relationships between the Consumer Price Index (CPI), Bond Yield
Rate, and Volatility Index (VIX) with their stock prices. The computed regression coefficients highlight the varying
degrees of influence that CPI, Bond Yield Rate, and VIX Index exert on the stock prices of mid-cap banks. Notably, the
CPI demonstrates a significant impact across several banks, reinforcing the notion that inflation levels can affect bank
valuations in complex ways. Table 4 showcases the regression coefficients for Mid-cap Bank Stocks.

Table 4: Regression Coefficients computed for selected mid-cap bank stocks

Company Intercept CPI Bond Yield Rate VIX index

AU BANK -1078.49 9.85 9.289 -3.417
IDFC First Bank 13.38 0.235 0.764 -0.614
UNION Bank 28.486 -0.637 20.065 -0.664
CANARA Bank -329.117 0.565 72.581 -2.424
FEDERAL Bank -145.448 0.915 16.048 -0.967

10



The p-values associated with these coefficients (Table 5) underscore the statistical significance of the CPI for all banks
under consideration, particularly AU Bank and Federal Bank, suggesting a robust predictive power of inflation on their
stock performances. Conversely, the Bond Yield Rate and VIX Index demonstrate varied significance levels, indicating
differential sensitivity among mid-cap banks to interest rate changes and market volatility.

Table 5: p-value obtained for selected mid-cap bank stocks

AU BANK IDFC First Bank UNION Bank CANARA Bank FEDERAL Bank

Intercept 2.29E-07 0.535 0.314 0.00069 6.51E-05
CPI 1.12E-17 0.013 2.29E-06 0.1542 4.60E-08
Bond Yield Rate 0.546 0.674 1.927E-11 6.26E-13 5.86E-07
VIX index 0.011 0.0003 0.0017 0.00051 0.00018

The R2 and F-statistics shown in Table 6 further validate the regression models, indicating a significant proportion of
the variance in stock prices for mid-cap banks is explained by the selected macroeconomic indicators. The high R2 values
for banks like AU Bank and Union Bank suggest a strong model fit, capturing the essence of how inflation, interest rates,
and market volatility impact their stock valuations.

Table 6: R2 and F computation for selected mid-cap bank stocks

Company Significance F R2

AU BANK 1.23E-16 0.764
IDFC First Bank 8.84E-05 0.329
UNION Bank 1.41E-16 0.763
CANARA Bank 2.00E-15 0.738
FEDERAL Bank 1.62E-12 0.662

The findings from the mid-cap bank stocks analysis underscore the intricate ways in which macroeconomic indicators
influence bank stock prices. While inflation consistently presents a significant effect, the response to bond yield rates and
market volatility varies, reflecting the diverse strategic positioning and sensitivity of mid-cap banks to economic changes.

3.3 Small-cap Bank Stocks

Exploring the impact of macroeconomic indicators on small-cap bank stocks reveals insights into the sensitivity of smaller
banks to economic fluctuations. This analysis encompasses small-cap entities such as Karnataka Bank, South Indian Bank,
DCB Bank, Karur Vysya Bank, and Dhanalaxmi Bank. The regression analysis given in Table 7 provides a detailed look
at how CPI, Bond Yield Rate, and the VIX index impact the stock prices of small-cap banks. The coefficients obtained
highlight the unique financial dynamics small-cap banks face in response to economic changes.

Table 7: Regression Coefficients computed for selected small-cap bank stocks

Company Intercept CPI Bond Yield Rate VIX index

Karnataka Bank -99.71 0.025 27.497 -0.731
South Indian Bank 5.50 -0.091 3.416 -0.171
DCB Bank 474.37 -2.637 15.111 -1.948
Karur Vysya Bank -82.78 0.0398 22.766 -0.865
Dhanalaxmi Bank 22.49 -0.048 0.463 -0.176

The significance of these regression coefficients, as shown in the p-values (Table 8), indicates the varying degrees of
impact that inflation, bond yields, and market volatility have on small-cap banks. Some variables show a significant
influence on stock prices, underscoring the importance of these economic indicators in investment and valuation models
for small-cap banks.
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Table 8: p-value obtained for selected small-cap bank stocks

Karnataka Bank South Indian Bank DCB Bank Karur Vysya Bank Dhanalaxmi Bank

Intercept 0.032536444 0.4146811 2.81361E-08 0.015254564 4.31195E-05
CPI 0.89793315 0.002622226 2.13369E-11 0.778899937 0.027945654
Bond Yield Rate 2.26739E-09 1.4733E-07 0.017207232 5.67407E-11 0.280528574
VIX index 0.029075313 0.000804697 0.000473324 0.000586506 1.07092E-05

The determination coefficients (R2) and the F-statistic as shown in Table 9 for these banks provide a quantitative
measure of the regression model’s fit and its overall explanatory power regarding the stock prices of small-cap banks.

Table 9: R2 and F computation for selected small-cap bank stocks

Company Significance of F R2

Karnataka Bank 9.34E-11 0.605
South Indian Bank 6.51E-12 0.643
DCB Bank 2.66E-13 0.684
Karur Vysya Bank 1.06E-13 0.695
Dhanalaxmi Bank 1.27E-06 0.431

The analysis for small-cap banks demonstrates that despite their size, these institutions are significantly impacted by
broader economic indicators. The CPI, Bond Yield Rate, and VIX index each play a critical role in shaping the stock
performance of small-cap banks, with the variability in their effects highlighting the diverse financial environments these
banks operate within. This segment’s findings are crucial for investors focusing on small-cap banks, offering insights into
the factors driving stock prices in this market segment.

4 Discussion

The analysis presented in this paper elucidates the intricate relationships between macroeconomic indicators—specifically,
inflation, ten-year bond yield rates, and the VIX Index—and the stock prices of Indian banks categorized by market capi-
talization. The differential impact observed across large, mid, and small-cap banks sheds light on the varying sensitivities
and adaptive capacities within the banking sector to macroeconomic changes. Inflation, often considered a detriment to
economic stability, has shown a mixed impact on bank stocks. For large and mid-cap banks, the effect of inflation appears
somewhat positive, suggesting that these institutions might leverage their diversified operations and market influence to
mitigate adverse inflationary effects. This capacity to adapt could be less pronounced in small-cap banks, which might
explain their varied response to inflationary pressures. The sensitivity of bank stocks to interest rate fluctuations, as
evidenced by the reaction to ten-year bond yield rates, particularly among large-cap banks, highlights a crucial aspect
of financial management within these institutions. The negative relationship observed suggests that higher interest rates
could compress net interest margins, impacting profitability. This finding underscores the importance of robust interest
rate risk management strategies in safeguarding bank profitability and stock value. Furthermore, the significant role
of market volatility, indicated by the VIX Index, in influencing bank stock prices, especially among small and mid-cap
banks, points to the broader market sentiment and risk perception as pivotal factors in bank valuation. During periods
of heightened market uncertainty, these banks’ stocks appear more susceptible to adverse impacts, reflecting the need
for effective risk management practices to withstand volatility. For investors, these insights underscore the importance
of considering the size of a bank and its corresponding sensitivities to macroeconomic indicators when constructing in-
vestment portfolios. A nuanced understanding of these dynamics can enhance investment strategies, potentially leading
to more informed decisions that account for the economic and market conditions affecting bank stocks. From a policy
perspective, the findings highlight the necessity for nuanced monetary and macroprudential policies that consider the
diverse impacts of economic indicators on banks of different sizes. Tailoring policy measures to address the specific needs
and vulnerabilities of the banking sector could contribute to the overall stability and growth of the financial market. In
essence, the study contributes to a deeper understanding of the complex interplay between macroeconomic factors and
bank stock prices in India, offering valuable perspectives for investors, the banking sector, and policymakers. It paves
the way for further research that could explore additional variables and their effects on the banking sector, potentially
broadening the scope of understanding of financial market dynamics.
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5 Conclusion

This study explores the effects of inflation (via the Consumer Price Index, CPI), the 10-year bond yield rate, and market
volatility (via the VIX index) on the stock prices of Indian banks across different sizes from 2018 to 2023. It reveals that
inflation consistently influences bank stock prices across all sizes, though its impact varies. The relationship between bank
stock prices and both interest rates and market volatility is found to be more complex, indicating different sensitivities
and strategies among banks of varying sizes. The findings offer key insights for investors and financial analysts, suggesting
that a deep understanding of these economic indicators’ impacts on banks can enhance investment decisions and risk
management. Furthermore, this research contributes to the broader dialogue on financial market dynamics, encouraging
further exploration into the factors affecting the banking sector. In summary, the study underscores the importance
of macroeconomic indicators in shaping the stock prices of banks in India, providing valuable guidance for investors,
policymakers, and the banking industry towards more robust financial strategies and policies.
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Abstract

Twitter is the biggest micro-blogging website that gives people a platform to share their opinions about any new
happenings around the world. The size of tweets is generally short, which makes it very suitable for opinion mining.
The key focus of the paper is to analyze the feelings and ideas. In this paper, analysis is done on the classification
of tweets on a particular keyword. The tweets related to the given keyword are collected, analyzed, and the result is
generated in the form of percentage of positive, neutral, and negative sentiments, which gives us a sense of the overall
sentiment of the keyword. Further, Classification is done using supervised learning algorithms and the best among
these will be found by calculating the accuracy of each.

Keywords: Sentiment Analysis, Logistic Regression, Support Vector Machines Opinion Mining, Supervised Machine
Learning, Näıve Bayes, Decision Tress, Accuracy, Polarity Prediction.

1 Introduction

The classification of data is a continuously emerging topic among data scientists due to the continuously growing demand
for classification. The main reason being that it allows analyzing the data globally, which can be used to derive a lot of
information. The type of classification being discussed here is the classification of text. Text classification into already
defined classes is also known as sentiment analysis [1], which recognizes the emotional aspect of the given content and
assigns meaning to the sentiment, e.g., neutral, negative, and positive. Sentiment analysis [2] can be used in almost every
aspect of the modern world, from products to services, e.g., online marketing, healthcare, social media. It can also be used
in financial services or in political areas, and other possible domains where people leave their opinion. Organizations look
to collect public or consumer opinions about their services and products. For that, opinion gathering methods such as
surveys are conducted with the focus on targeted groups. So, modern solutions like sentiment analysis that work on topics
such as classification using machine learning algorithms and work with collections of people’s feedback or data expressed
within short text messages, e.g., tweets, reviews of products prove to be very helpful. The results of this paper can be
used in a variety of largescale data processing systems, finding the optimal information and their values to implement
the algorithms, understanding and predicting the data to support decision making, and for knowledge gathering process.
In this paper, Support Vector Machines, Näıve Bayes, Decision Tree, and Logistic Regression classifiers [3] are used for
the classification task to get percentage-wise classification of sentiment on the keyword and to get the best classification
accuracy using a number of tweets from Twitter. These methods are the most accurate and popular classification methods
in the given domain of research.
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2 Methods

Sentiment Analysis is performed using Twitter APIs. With the help of these four keys, viz., Consumer Key, Consumer
Secret, Access Token, and Access Token Secret, Twitter can be accessed. Tweedy is an open-source and easy-to-use
library that allows access to the Twitter API [4]. The Tweets can now be fetched and are stored in a JSON format. A
Labelled dataset is also downloaded. Natural Language Processing (NLP) is applied to both datasets to clean the data.
With classification algorithms, tweets can be classified into positive, neutral, and negative polarity. Distinct classification
algorithms like Support Vector Machine (SVM), Logistic Regression (LR), Näıve Bayes (NB), and Decision Trees (DT)
[5] are utilized for categorization and further, the performance for each classifier can be measured in terms of accuracy.
The design to build the proposed methodology is depicted in Figure 1.

Figure 1: Workflow for the Methodology.

2.1 Extraction of Tweets

� Getting Authentication Credentials
Authentication credentials such as Consumer Key, Consumer Secret, Access Token, and Access Token Secret can
be generated by creating an application on Twitter. By visiting the Twitter Developer Website and providing all
the necessary details, a Twitter Application can be created.

� Authenticating Python Script
After establishing all the login credentials, that is APIs and Access Tokens, authentication can progress. To initialize
authentication, some Python libraries need to be imported.

� Defining Keywords
Keywords are the search words that search for tweets involving the specified keyword. Keywords are termed as
input which is in the form of a string. A thousand tweets are fetched and stored in a JSON format.

2.2 Pre-processing the Tweets

Pre-processing is an important aspect of data mining. Pre-processing is a screening phase which means analyzing data
such that the data should not result in any misleading results. This ensures quality and a good representation of data,
which is extremely important to begin any analysis. In this project, Natural Language Processing (NLP) [6–8] is used by
importing the Natural Language Toolkit (NLTK) library as the medium to screen and clean the data. Various techniques
for processing natural language context are:

1. Tokenization: It is the practice of breaking a large set of contexts into smaller text or terms. Tokenization is of
two types, namely Sentence Tokenization, which means breaking text into sentences, and Word Tokenization, which
means splitting sentences into words.

2. Removal of Stop Words: Stop-words are English words that do not add meaning to a sentence and therefore
can be disregarded. For example, ’have’, ’the’, ’are’, ’was’, etc.

3. Lexicon Normalization: It is the process of translating a non-standard text to a standard one. The goal is to
eliminate various forms of words thus retaining a single and actual representation. For example, ’play’, ’playing’,
’playable’, etc., can be reduced to “play” to retain the core meaning. Lexicon Normalization is of two types, namely:
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� Stemming is the process of reducing the morphological variants of a root or base word. The aim is to remove
affixes, i.e., prefixes and suffixes, for example, reducing the words “chocolates”, “chocolatey”, and “choco” to
the root word “chocolate”.

� Lemmatization is the process of grouping different forms of a word so that they can be analyzed as a single
item.

The workflow for pre-processing tweets is shown in Figure 2.

Figure 2: Workflow for Pre-processing Tweets.

2.3 Feature Extraction and Selection

Feature Extraction is the practice of selecting variables into features by efficiently reducing the amount of data that
must be processed. Essentially, feature extraction involves extracting useful features from existing data. Conversely,
Feature Selection refers to the process of filtering out irrelevant and unessential characteristics from the dataset, thereby
choosing the most relevant attributes. In our project, the technique employed for extracting and selecting features is
“Term Frequency–Inverse Document Frequency” (TF-IDF) [9, 10], a methodology that quantifies the importance of a
term in a document. The weight assigned to each term indicates its significance within the corpus. This technique is
widely utilized in the field of Knowledge Retrieval.

2.4 Training the Model with Machine Learning Algorithms

Supervised Learning Algorithm [11] is the machine learning task of instructing the model to learn a function that maps
an input to an output based on example input-output pairs. It derives a function from a labeled training dataset that
consists of a set of training examples. In supervised learning, each example is a pair consisting of an input object (vector)
and a desired outcome value (supervisory signal). This kind of learning algorithm analyzes the training data and produces
an inferred function, which can be used for mapping new instances. An optimal model allows the algorithm to correctly
predict the class labels for unseen instances, thus applying the learned function to new data in a ”reasonable” way. The
process of mapping from input to output using the supervised learning algorithm is illustrated in Figure 3.

Figure 3: Illustration of the supervised learning process.
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The various types of supervised learning algorithms include:

1. Näıve Bayes (NB): A Classification Algorithm [12] part of a family of probabilistic algorithms based on Bayes’
Theorem with a “naive” assumption of independence among each set of features. The theorem computes the
probability P (c|x), where c is the class of the possible outcome and x is the given instance to be categorized, with
certain attributes. The formula used is as shown in Eq. (1)

P (c|x) = P (x|c) · P (c)

P (x)
(1)

2. Support Vector Machine (SVM): SVM [13] are Supervised Learning algorithms that analyze data for cate-
gorization. An SVM training algorithm builds a model that assigns new examples to one category or the other,
making it a non-probabilistic binary linear classifier. The optimal hyperplane is identified such that it maximizes
the margin between the two classes.

3. Decision Trees (DT): The Decision Tree algorithm [14] is used in statistics, data mining, and machine learning as
a predictive modeling tool. It moves from observations about an item (represented in the branches) to conclusions
about the item’s target value (represented in the leaves). Leaves represent class labels and branches represent
conjunctions of features that lead to those class labels.

4. Logistic Regression (LR): This learning algorithm [15, 16] is used for estimating the probability of a binary
outcome. It is modeled by the logistic function, as represented by Eq. (2).

P (Y = 1|X) =
1

1 + e−(β0+β1X)
(2)

2.5 Testing the Model

Testing is the phase where the model, trained in the training phase, is evaluated based on its performance. In the proposed
system, the testing phase consists of two components: Accuracy Prediction and Percentage Calculation of Polarity of
Tweets. Further, both Accuracy Prediction and Percentage Calculation of Polarity of Tweets are graphically depicted
with the help of a Pie-Chart.

3 Results and Discussion

This section presents the details of the experiments conducted in this project along with the discussion of the outcomes.
In addition to sentiment analysis, the polarity percentage is calculated [17], with the goal of determining the accuracy
[18]. Various classifiers such as Decision Trees (DT), Support Vector Machines (SVM), Näıve Bayes (NB), and Logistic
Regression (LR) are employed to analyze the accuracy of each classifier. The primary reason for using four different
classifiers is to compare their accuracies. A total of 1000 tweets were collected from Twitter using Twitter APIs, and
48 tweets were analyzed from the downloaded dataset after pre-processing. Sentiments such as positive, neutral, and
negative are validated using both datasets, namely the Downloaded and the Extracted Dataset. The following Table 1
and Figure 4 depict the polarity calculation in terms of the number of tweets with all four classifiers used on the Extracted
Dataset.

Table 1: Polarity Calculation for the extracted data with different classifiers.

Classifier Positive Neutral Negative

Näıve Bayes (NB) 176 225 599
Support Vector (SVM) 123 5 872
Decision Tree (DT) 23 147 830
Logistic (LR) 188 14 798

Figure 4: Graphical Representation of Tweets from Extracted Dataset.
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The polarity calculation for the downloaded dataset is presented in Table 2 and the graphical representation is shown
in Figure 5. This dataset was used to validate the performance of the different classifiers on a pre-existing, processed
collection of data. However, after pre-processing and training the model, it was established that Logistic regression has
the maximum accuracy. The following table shows the accuracy in terms of percentage of each classifier. Also, the figure
depicts the graphical representation of the same. As a result, Logistic Regression shows highest accuracy.

Table 2: Polarity Calculation for the Downloaded Dataset with different classifiers..

Classifier Positive Neutral Negative

Näıve Bayes (NB) 8 19 21
Support Vector Machine (SVM) 12 12 24
Decision Trees (DT) 9 17 22
Logistic Regression (LR) 13 11 24

Figure 5: Graphical Representation of Tweets from Downloaded Dataset.

The analysis of the downloaded dataset allows for a direct comparison between the various machine learning algorithms
in terms of their ability to classify sentiment accurately. It can be observed from Table 2 and Figure 5 that different
classifiers exhibit varying levels of performance with respect to the sentiment classification task.

The accuracy of each classifier is quantified and presented in Table 3, while Figure 6 provides a visual representation
of these accuracies.

Table 3: Accuracy Matrix of the classifiers.

Classifier Accuracy (%)

Näıve Bayes (NB) 66.666
Support Vector Machine (SVM) 64.583
Decision Tree (DT) 39.583
Logistic Regression (LR) 69.416

Figure 6: Graphical Representation of Accuracy Prediction.

The analysis of the accuracy of the classifiers is critical to understanding their performance. As shown in Table 3 and
Figure 6, the Logistic Regression (LR) classifier achieves the highest accuracy, while the Decision Tree (DT) classifier
has the lowest accuracy among the four classifiers. These results are significant in the context of sentiment analysis
where the precision of prediction is paramount. The calculation of the percentage polarity of Tweets is visualized using
graphical representation [19]. A Pie-Chart is drawn to depict the proportion of polarity (Negative, Positive, and Neutral)
for both datasets. The accuracy with the count, i.e., the number of tweets, is also displayed in Figure 7. The graphical
representation for one of the classifiers could not be shown below. The first pie-chart represents the analyzed Tweets
from the Downloaded Dataset and the second pie-chart represents analyzed Tweets from the Extracted Dataset.
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Figure 7: Graphical representation of Näıve Bayes.

4 Conclusions

In this paper, the sentiments of people on a particular keyword are analyzed in terms of percentage for negative, positive,
and neutral sentiments, as well as the adoption of various machine learning algorithms for the classification of sentiments
to determine the approach with the maximum accuracy. The data used in this study is a collection of tweets from
the social media platform Twitter. Various classification models have been tested to reflect the best model in terms
of accuracy. Further improvements to the models can be achieved by exploring different methodologies and expanding
domain knowledge, including the implementation of emoticon analysis, understanding order dependence, and detecting
sarcasm. Despite the challenges and complexities inherent in opinion analysis, its value to business and decision-making
cannot be overlooked. Sentiment prediction relies on human-like aspects, suggesting that it will become a major influence
in industry decisions in the foreseeable future. Enhancing the precision and reliability of extraction methods could
help address some of the current challenges in sentiment prediction. Looking forward, a more refined and accurate
representation of public opinion is envisioned, established through Sentiment Prediction. This vision includes a societal
construct where every opinion is considered, and each sentiment contributes to decision-making processes, transcending
the need to rely solely on a few ’experts’. It is towards this future that sentiment analysis endeavors to contribute
significantly.
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Abstract

This study evaluated the value of π using the Monte Carlo Simulation Method and compared the results with
experimental values. The experimental value of π was determined by considering a unit circle |z| = 1 centered at the
origin, inscribed within a square with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Points were randomly generated within
the square, where points satisfying |z| ≤ 1 lay within the circle, and those with |z| ≥ 1 lay outside the circle but
within the square. By selecting large numbers of random pairs and determining their positions relative to the circle,
the ratio π = 4n

N
was calculated, where N was the total number of points and n was the number of points within the

circle. Larger sample sizes yielded values of π closer to the true value. The distribution of Monte Carlo Simulation
results, using 20 triplets of random numbers, was examined with non-parametric tests such as Friedman’s Test. Ranks
were assigned to the 20 random numbers row-wise for each triplet. The null hypothesis, asserting that all triplets had
identical effects, was tested and showed significant differences at the 5% level. Additionally, the distribution was tested
for goodness of fit using a Chi-Square Test at a 5% significance level. Results indicated that the triplets of random
numbers conformed to the expected distribution.

Keywords: Random Number; Triplets; Non-Parametric Test; Friedman’s Test; Chi-Square Test

1 Introduction
The technique of simulation is extensively utilized in the physical sciences and is increasingly becoming a crucial tool
for addressing complex problems in managerial decision-making. Scale models of machines are used to simulate plant
layouts, and models of aircraft are tested in wind tunnels to determine their aerodynamic characteristics. Simulation,
aptly described as a management laboratory, assesses the effects of various alternative policies without disrupting the
real system. Techniques such as linear programming, dynamic programming, queuing theory, and network models are
insufficient to tackle all significant managerial problems requiring data analysis, each having its limitations. When
characteristics such as uncertainty, complexity, dynamic interaction between decisions and subsequent events, and the
need to develop detailed procedures with finely divided time intervals combine in one scenario, it becomes too complex
for traditional mathematical programming and probabilistic models. Such situations necessitate analysis by alternative
quantitative techniques that provide accurate and reliable results. The Monte Carlo method of simulation, developed
by mathematicians John von Neumann and Stanislaw Ulam during World War II, was initially used to study neutron
travel through various materials. The technique provided an approximate but workable solution to this problem and
soon became popular, finding numerous applications in business and industry.
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It is now a vital tool in the operations researcher’s toolkit [1–7]. In computer science and its applications, new or
improved algorithms are compared with existing ones on several datasets to demonstrate superior performance. Let
x1 represent the control algorithm, and x2, x3, x4, . . . , xk represent the k − 1 benchmark algorithms. The challenge
lies in better judging whether the control algorithm x1 has a significant advantage over other benchmark algorithms on
experimental datasets. Due to dataset diversity and various random factors in training and testing, it is rare for the control
algorithm to perform better on all datasets. Therefore, meaningful conclusions require statistical hypothesis tests [8].
These tests are categorized into parametric and non-parametric tests [9–11]. Parametric tests assume that the data follows
a known probability distribution and make inferences about distribution parameters [10]. Conversely, non-parametric tests
typically have no preliminary assumptions about the data distribution, making them applicable in various circumstances.
Most non-parametric tests use rankings instead of raw data for hypothesis testing. A transformation procedure is adopted
to obtain rankings for control and benchmark algorithms [9, 10]. The choice of statistical tests depends on the specific
application, data characteristics, and researcher preferences. Parametric tests often have assumptions regarding data
characteristics for comparison. For instance, analysis of variance (ANOVA) requires data to meet conditions such as
independence, normality, and homogeneity [10]. When these assumptions are met, parametric tests are more effective
[10]. Otherwise, parametric tests can produce biased conclusions. In practical applications, it is rarely possible to verify
that algorithm results on different datasets satisfy these assumptions. Therefore, non-parametric tests are commonly
considered [9, 12]. When selecting a non-parametric test, it is necessary to distinguish between pairwise and multiple
comparisons. Non-parametric tests for pairwise comparisons include the Wilcoxon signed-rank test [13]. For multiple
comparisons, non-parametric tests include the Friedman test, multiple sign tests [14], and contrast estimation based
on medians [15]. Although non-parametric tests are widely adopted in published papers [16–19], the Friedman test is
particularly effective and widely used by many scholars [20, 21]. O’Gorman [22] compared the F-test, Friedman test, and
several aligned Friedman tests using Monte Carlo simulation. The Monte Carlo technique employs random numbers and
is suitable for problems involving probability where physical experimentation is impractical, and mathematical model
formation is impossible. It is a simulation method using a sampling technique. The steps involved in conducting a Monte
Carlo simulation are:

• Select the measure of effectiveness of the problem.

• Identify the variables that significantly affect the measure of effectiveness.

• Determine the cumulative probability distribution of each variable selected in step 2.

• Generate a set of random numbers.

• Consider each random number as a decimal value of the cumulative probability distribution.

• Record the value(s) of the variables generated in step 5. Substitute in the formula chosen for the measure of
effectiveness and find its simulated value.

• Repeat steps 5 and 6 until the sample is large enough to satisfy the decision maker.

This paper aims to study the value of π obtained through the Monte Carlo Simulation method and to compare the results
with experimental values. The Monte Carlo Simulation distribution is tested by applying non-parametric hypothesis
testing methods, such as Friedman’s Test and the Chi-Square Test.

2 Methods

2.1 Experimental Determination of π

The coordinate axes OX and OY were drawn. With center O, an arc PR of unit radius was drawn, completing the
square OPQR as shown in Figure 1. The equation of the circle was established as x2+y2 = 1. From the random number
table, two numbers were selected, specifically 0.2068 and 0.7295, and were assigned as values to x and y respectively.
The point P1(0.2068, 0.7295) was plotted. If x2 + y2 ≤ 1, then P1 lay inside or on the arc of the circle. Conversely, if
x2 + y2 > 1, P1 lay outside the arc but within the square.

Several pairs of random numbers were continuously selected, and it was determined whether the points represented
by these numbers fell within or on the arc, or outside the arc but within the square. Let N represent the total number of
points considered, and n represent the number of points that lay in or on the arc. Then, the Equation (1) was established:

n

N
=

Area enclosed by the arc
Area of the square (1)

As the area enclosed by the arc is π
4 and the area of the square is 1, the ratio was calculated as given by Equation (2):

n

N
=

π

4
(2)

23



From this, π was calculated using the Equation (3):

π =
4n

N
(3)

This equation provided the experimental value of π. The method demonstrated that the larger the sample size N ,
the closer the obtained value was to the true value of π, effectively illustrating the utility of geometric random sampling
for approximating π, as depicted in Figure 1.

Figure 1: Illustration of points inside or outside the arc but within the square.

2.2 Monte Carlo Simulation Approach
Three points were chosen at random on the circumference of a circle using Monte Carlo methods to determine the
probability that they lie on the same semicircle. A circle of circumference unity, i.e., of radius 1

2π , was drawn as depicted
in Figure 1. A triplet of random numbers (0.48, 0.51 and 0.06) was selected from the random number table. These
numbers were plotted as points A, B and C on the circumference in Figure 2, with their positions from point O along the
circumference measured anticlockwise. Since the difference between the maximum (0.51) and minimum (0.06) values in
this triplet was less than 0.50, the points were determined to lie on the same semicircle. The following general rule was
applied to ascertain whether a triplet of random numbers lies on a semicircle:

1. The difference between the maxima and minima needs to be calculated. If this difference is ≤ 0.50, the triplet is
considered to lie on a semicircle.

2. If the difference is > 0.50, unity is added to those random numbers in the triplet that were < 0.50 and to the
minimum random number in the triplet. The new difference between the maxima and minima needs to be then
found. If this difference is ≤ 0.50, the triplet is considered to lie on a semicircle; otherwise, it did not.

Figure 2: Three points chosen at random on the circumference of a circle using Monte Carlo methods.
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2.3 Friedman’s Test / Two-Way Analysis of Variance by Ranks
Friedman’s test is a non-parametric test utilized to identify differences across multiple treatments on the same subjects.
Being non-parametric, this test does not assume that the data originates from a specific distribution, such as the normal
distribution. This test is effectively an extension of the sign test and is applied when there are more than two treatments,
although it reduces to the sign test with only two treatments. This statistic is applicable in two distinct scenarios that
may seem different but fundamentally address the same statistical question: either measuring the same quantitative
variable at different times or measuring different comparable quantitative variables from the same sample. In both cases,
Friedman’s test serves to compare the distributions of the variables and thus, it was used in the present work.

2.4 Chi Square (χ2) Test to Test the Goodness of Fit
The χ2 test, a non-parametric statistic, is utilized to evaluate the degree of correspondence between observed frequencies
and those expected under a specified hypothesis. This test is especially appropriate for categorical data as it does not
assume a normal distribution. Given these characteristics, the χ2 test is particularly well-suited for the analysis of triplet
data in this study. It was thus used in the present work to provide a methodological framework to assess whether
observed variances from expected frequencies were statistically significant, thereby testing the underlying hypotheses of
the research.

3 Results

3.1 Monte Carlo Simulation Outcomes
Table 1 presents the results of the Monte Carlo simulation approach, indicating whether each of 20 triplets lies on a
semicircle.

Table 1: The Monte Carlo Simulation Techniques for Triplets of Random Numbers.

No. Triplet - 1 Triplet - 2 Triplet - 3 Diff Max & Min Diff New Max & Min Triplet on Semi-Circle Min Diff (x)

1 0.21 0.11 0.71 0.60 0.90 0.6
2 0.65 0.41 0.35 0.30 0.3 0.3
3 0.17 0.91 0.07 0.84 0.90 0.84
4 0.34 0.12 0.43 0.31 0.31 0.31
5 0.38 0.49 0.13 0.36 0.36 0.36
6 0.05 0.96 0.76 0.91 0.29 0.29 0.29
7 0.85 0.69 0.57 0.28 0.28 0.28
8 0.63 0.41 0.03 0.60 0.62 0.6
9 0.91 0.58 0.62 0.33 0.33 0.33
10 0.75 0.89 0.23 0.66 0.48 0.48 0.48
11 0.21 0.36 0.59 0.38 0.38 0.38
12 0.39 0.19 0.21 0.20 0.2 0.2
13 0.74 0.86 0.90 0.16 0.16 0.16
14 0.64 0.18 0.67 0.49 0.49 0.49
15 0.20 0.72 0.34 0.52 0.86 0.52
16 0.54 0.30 0.22 0.32 0.32 0.32
17 0.48 0.74 0.76 0.28 0.28 0.28
18 0.02 0.07 0.64 0.62 0.95 0.62
19 0.95 0.23 0.91 0.72 0.32 0.32 0.32
20 0.48 0.55 0.91 0.43 0.43 0.43
Total 15 0.4

Out of 20 triplets, 15 were found to lie on a semicircle, yielding a calculated probability of 15
20 = 0.75. The experimen-

tally determined value of π, where N = 20 and n = 15, was calculated as 3 using Equation 4:

π =
4n

N
(4)

It was observed that increasing the sample size N would bring the value of π closer to its experimental value.

3.2 Friedman’s Test Results
For the Friedman’s test, the ranks of 20 randomly selected numbers were assigned row-wise for each Triplet – 1, Triplet
– 2, and Triplet – 3, as illustrated in Table 2.

25



Table 2: Details of Ranks Assigned Row-wise for Each Triplet

Sr. No Triplet 1 Triplet 2 Triplet 3 Rank of Triplet 1 Rank of Triplet 2 Rank of Triplet 3

1 0.21 0.11 0.71 2 1 3
2 0.65 0.41 0.35 3 2 1
3 0.17 0.91 0.07 2 3 1
4 0.34 0.12 0.43 2 1 3
5 0.38 0.49 0.13 2 3 1
6 0.05 0.96 0.76 1 3 2
7 0.85 0.69 0.57 3 2 1
8 0.63 0.41 0.03 3 2 1
9 0.91 0.58 0.62 3 1 2
10 0.75 0.89 0.23 2 3 1
11 0.21 0.36 0.59 1 2 3
12 0.39 0.19 0.21 3 1 2
13 0.74 0.86 0.90 1 2 3
14 0.64 0.18 0.67 2 1 3
15 0.20 0.72 0.34 1 3 2
16 0.54 0.30 0.22 3 2 1
17 0.48 0.74 0.76 1 2 3
18 0.02 0.07 0.64 1 2 3
19 0.95 0.23 0.91 3 1 2
20 0.48 0.55 0.91 1 2 3
Total of Ranks 40 39 41

The null hypothesis assumes that all triplets exert identical effects, while the alternative hypothesis suggests that the
effects vary among the triplets. Here, N represents the total number of triplets (20), and k, the number of conditions,
is 3. The total ranks for each column were 40, 39, and 41, respectively. The Friedman test statistic was calculated as
380.16 using Equation (5):

FM =
12N

k(k + 1)

(∑
R2 − k(k + 1)2

4

)
(5)

With the significance level set at 5% and the degrees of freedom df = k−1 = 2, the critical value from the Chi-Square
table for 2 degrees of freedom at 5% significance is FMtable = 5.99. Given that the computed Friedman test statistic
FMCalculated = 380.16 significantly exceeds the critical value FMtable = 5.99, the null hypothesis is rejected. This result
indicates significant differences in the effects of the triplets.

3.3 Chi-Square Goodness-of-Fit Test
The Chi-Square Goodness-of-Fit test was conducted to determine if the distribution of differences between maxima and
minima across triplets aligns with a theoretical or expected distribution. The obtained results are shown in Table 3 The
hypotheses were formulated as follows:

• Null Hypothesis (H0): The observed distribution matches the expected distribution.

• Alternative Hypothesis (H1): There is a significant difference between the observed and expected distributions.

The expected frequency (E) and the observed frequency (O) for each category were calculated, leading to the χ2

statistic using Equation (6).

χ2 =
∑ (O − E)2

E
(6)

With N = 20 triplets and the calculated χ2 value of 1.2977, we compare this to the critical value for 19 degrees of
freedom at a 5% level of significance, 30.14. Since 1.2977 < 30.14, we accept the null hypothesis, indicating no significant
difference between the observed and expected distributions. This suggests that the triplets follow the expected goodness
of fit, underscoring the importance of understanding both the statistical significance of test results and their practical
implications in research contexts.
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Table 3: Details of Observed and Expected Minimum Difference between Maxima and Minima

Sr. No Triplet - 1 Triplet - 2 Triplet - 3 Difference between
Maxima and Minima

Difference between
New Maxima and
New Minima

Minimum Difference between
Maxima and Minima (O) O-E (O-E)2

1 0.21 0.11 0.71 0.60 0.90 0.6 0.2 0.04
2 0.65 0.41 0.35 0.30 0.3 -0.1 0.01
3 0.17 0.91 0.07 0.84 0.90 0.84 0.44 0.194
4 0.34 0.12 0.43 0.31 0.31 -0.09 0.008
5 0.38 0.49 0.13 0.36 0.36 -0.04 0.002
6 0.05 0.96 0.76 0.91 0.29 0.29 -0.11 0.0121
7 0.85 0.69 0.57 0.28 0.28 -0.12 0.014
8 0.63 0.41 0.03 0.60 0.62 0.6 0.2 0.04
9 0.91 0.58 0.62 0.33 0.33 -0.07 0.005
10 0.75 0.89 0.23 0.66 0.48 0.48 0.08 0.006
11 0.21 0.36 0.59 0.38 0.38 -0.02 0.0004
12 0.39 0.19 0.21 0.20 0.2 -0.2 0.04
13 0.74 0.86 0.9 0.16 0.16 -0.24 0.058
14 0.64 0.18 0.67 0.49 0.49 0.09 0.008
15 0.2 0.72 0.34 0.52 0.86 0.52 0.12 0.014
16 0.54 0.3 0.22 0.32 0.32 -0.08 0.006
17 0.48 0.74 0.76 0.28 0.28 -0.12 0.014
18 0.02 0.07 0.64 0.62 0.95 0.62 0.22 0.048
19 0.95 0.23 0.91 0.72 0.32 0.32 -0.08 0.006
20 0.48 0.55 0.91 0.43 0.43 0.03 0.0001

Total 0.405 0.5256

4 Discussion
The Monte Carlo Simulation method was employed to estimate the value of π, utilizing random sampling within a
geometric framework. The efficacy of this method is strongly influenced by the sample size N ; an increase in N leads to
an estimated value of π that converges more closely to its true value. This convergence is supported by the Law of Large
Numbers, which asserts that the average of the results from a large number of trials will approximate the expected value.
The Monte Carlo method involves generating pairs of random numbers and determining whether these points lie within
a unit circle inscribed in a square. The ratio of points within the circle to the total number of points, multiplied by 4,
yields an estimate of π. This approach is valued for its simplicity and computational efficiency, making it a popular choice
for numerical integration and probabilistic simulations. To validate the distribution of the generated random numbers,
non-parametric tests such as Friedman’s Test and the Chi-Square Test were applied. Friedman’s Test, which detects
differences in treatments across multiple attempts, indicated that the triplets of random numbers have varying effects.
This conclusion was derived by ranking the triplets and calculating the test statistic, which significantly exceeded the
critical value at a 5% significance level, suggesting variability among the triplets and highlighting the stochastic nature of
random sampling. The Chi-Square Test for goodness of fit assessed the alignment of the observed distribution of random
triplets with the expected theoretical distribution. The calculated χ2 value was significantly lower than the critical value,
leading to the acceptance of the null hypothesis. This indicates that the triplets of random numbers closely follow the
expected distribution, affirming the reliability of the Monte Carlo Simulation method in generating random samples that
conform to theoretical expectations. These findings underscore the importance of employing robust statistical methods
to analyze and validate the results of simulations, confirming the effectiveness of the Monte Carlo method and the
appropriateness of non-parametric tests in hypothesis testing for random samples.

5 Conclusions
This paper investigates the value of π obtained through the Monte Carlo Simulation method and compares the results with
the experimental value of π. It also tests the distribution of the Monte Carlo Simulation by applying non-parametric
hypothesis testing methods, such as Friedman’s Test and the Chi-Square Test. The detailed discussion and analysis
provided offer significant insights into the application of these statistical techniques. Key findings include:

• Accuracy of Monte Carlo Simulation: The accuracy of the Monte Carlo Simulation improves with larger sample
sizes N , underscoring the importance of scale in such simulations to achieve closer approximations of mathematical
constants.

• Effect of Random Triplets: Friedman’s Test reveals variability among triplets of random numbers, rejecting the
null hypothesis that all triplets have identical effects. This finding is critical in considering the randomness and
distribution of data points in simulations.
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• Goodness of Fit: The Chi-Square Test confirms that the triplets of random numbers adhere well to the theoretical
distribution, accepting the null hypothesis of goodness of fit and affirming the consistency of the Monte Carlo method
with expected theoretical results.

These findings have broader implications for the fields of computational engineering and data science. By demon-
strating the reliability and accuracy of Monte Carlo simulations in estimating π and analyzing random distributions,
this study provides a robust framework for students, researchers, and data analysts. The application of non-parametric
tests like Friedman’s Test and the Chi-Square Test provides powerful tools for hypothesis testing, enhancing informed
decision-making based on empirical data. The methodologies and results discussed can serve as references for further
research and applications in various domains where statistical analysis and simulations are pivotal. Understanding the
behavior of random numbers and their distributions is crucial for optimizing algorithms, enhancing data analysis tech-
niques, and improving the accuracy of computational models. In summary, this paper not only confirms the effectiveness
of the Monte Carlo Simulation method in approximating π but also highlights the importance of statistical hypothesis
testing in validating simulation results. These contributions are expected to foster deeper insights and innovations in
computational and statistical methods.
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Abstract

Composite structures and materials have seen significant advancements in cost-effectiveness, product efficiency,
and specific properties, leading to their extensive use in the aerospace industry. Reliable nondestructive testing (NDT)
of composites is crucial for reducing maintenance costs and addressing safety concerns. This review provides a com-
prehensive analysis of various NDT methods, including Ultrasonic Testing, Acoustic Emission, Eddy Current Testing,
Shearographic Testing, Infra-Red Thermography, and X-Ray Radiography. Each method’s principles, instruments,
and applications for defect detection and damage evaluation in composite materials are thoroughly examined. The
paper highlights the strengths and limitations of these NDT techniques, emphasizing their roles in ensuring the struc-
tural integrity of aerospace composites. Ultrasonic Testing and Infra-Red Thermography are identified as flexible and
cost-effective solutions, widely applied in both academic research and industrial sectors. Despite the challenges in
providing a complete diagnostic of structural integrity, each NDT method offers unique advantages. Future research
in NDT for composites will focus on integrating advanced data processing techniques, such as machine learning and
deep learning, and developing smart inspection systems with high precision and rapid data processing capabilities.

Keywords: Non-Destructive Testing; Composite Material; Ultrasound; Shearography; Inspection

1 Introduction
The first aircraft developed by the Wright Brothers was constructed using natural composites such as wood. However,
it was not until the invention of carbon fiber in 1964 that composites began to be extensively adopted as primary and
secondary structural materials in aircraft [1]. The objective was to develop innovative, lightweight, stiff, and robust
materials suitable for aircraft structures. Carbon Fiber Reinforced Polymers (CFRP), which consist of carbon fibers
embedded within a polymer matrix, have become increasingly popular due to their exceptional strength-to-weight ratio,
corrosion resistance, and the capability to fabricate components with complex geometries. These attributes have led to
their widespread use, particularly in the aerospace industry [2]. Nevertheless, periodic testing is essential throughout the
operational life of an aircraft to ensure the structural integrity and safety of its composite components. The proliferation
of composite materials in aircraft parts such as wing skins, engine covers, and fuselages has introduced unforeseen
challenges. For example, T-shaped stringer elements are utilized to reinforce the CFRP shells of aircraft [3]. These
stringers require a secondary polymerization process, as they are partially embedded within the aircraft’s CFRP shell
[4]. Improper polymerization conditions can lead to crack initiation in these stringers. Another significant challenge is
the automated fiber placement technique, which involves the robotic layering of pre-impregnated fibers on a composite
panel. This method can introduce defects such as gaps, laps, and twists [5].
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Furthermore, hybrid materials combining aluminum alloys and CFRP are now employed in aircraft components like
nacelles, wing boxes, and fuselages due to their superior fatigue life, impact resistance, and residual strength properties
[6]. The complexity of these components, due to their numerous interfaces, complicated geometries, and diverse elastic
properties, makes them difficult to inspect. Additionally, components are often replaced or repaired to extend the lifespan
of aging aircraft when damage is minor. A method involving the application of composite patches has been shown to
reduce operating costs. Moreover, composites can develop internal defects during manufacturing and throughout their
service life. Impacts are a common cause of in-service defects [7, 8]. Even low-energy impacts can result in Barely Visible
Impact Damage (BVID), which often leads to a complex network of matrix cracking and delamination internally or on
the reverse side without altering the structure’s exterior surface [9–11, 6]. Such damage poses a significant risk as it is not
visually detectable and can be challenging to identify during routine inspections [12].Other internal defect mechanisms,
such as porosity, matrix cracking, delaminations, and inclusions, may also contribute to the failure of composite structures
in addition to impact-induced damages [13, 8]. Numerous Non-Destructive Testing (NDT) methods have been developed
for diagnostic applications in aerospace composites. This paper reviews advancements in the field, critically evaluating
the advantages and disadvantages of each method. In particular, it addresses innovative NDT systems that hold promise
for overcoming the challenges associated with damage characterization and detection in composite laminates. These
challenges include high aspect ratios, complex geometry, and limited access due to varying elastic properties. The
application of smart inspection techniques is proposed to mitigate these difficulties. As outlined in Table 1, various
Non-Destructive Testing (NDT) techniques offer specific capabilities and face particular limitations that are critical in
their application to aerospace composites.

Table 1: Comparison of Non-Destructive Testing (NDT) Techniques Highlighting Their Capabilities and Limitations in
Aerospace Applications

NDT Techniques Capabilities Limitations

UT (Ultrasonic Testing) Capable of identifying surface and
subsurface anomalies.

Small anomalies smaller than the
grain size may go unnoticed. Largely
manual, heavily reliant on the exper-
tise and experience of the operator.
Signal misinterpretations can occur.

AE (Acoustic Emission) Able to detect surface and subsurface
flaws and provide details on the pro-
gression of the anomaly.

Extrinsic noises can lead to misin-
terpretations. Stress vibrations may
be attenuated by the structure being
tested.

ECT (Eddy Current Testing) Effective in detecting defects in elec-
trically conductive materials, includ-
ing those that are coated, primarily
on or near the surface.

Limited in assessing subsurface ab-
normalities in ferromagnetic materi-
als. Restricted to the evaluation of
elements with electrical conductivity.

ST (Shearography) Efficient in examining disbands and
Barely Visible Impact Damages
(BVIS).

The material must be subjected to ex-
ternal stressors such as vacuum, pres-
sure, vibration, or heat.

IRT (Infrared Thermography) Capable of identifying impact-
induced defects such as matrix
microcracks, fiber breakage, and
delamination.

Limited to near-surface defect imag-
ing; effectiveness depends highly on
defect depth and size.

X-Ray Primarily used to identify cracks de-
veloping in a plane perpendicular to
the beam direction and to detect
mesoscale and macroscale damage in
composite laminates.

Conventional X-rays have limited
contrast for common radiographic de-
fects in aerospace composites, re-
stricting their effectiveness.

2 Ultrasonic Testing
As shown in Figure 1, ultrasonic testing (UT) is an acoustic inspection technique that utilizes the reflection and trans-
mission of elastic waves within composite materials to identify defects. This method spans a broad frequency range
from 20 kHz to 1 GHz, tailored to specific applications. The frequency range most commonly employed in industry
for Non-Destructive Testing (NDT) varies between 0.5 and 10 MHz, although frequencies up to 100 MHz are utilized
specifically for detecting matrix cracks [14]. UT employs several representation methods, namely A-scan, B-scan, C-scan,
and D-scan [14]. The C-scan method is particularly effective for monitoring transmission losses caused by disbands and
delaminations under both low-energy and high-energy impacts [15–17]. During ultrasonic inspections, the sound beam
aligns with the axis of the reinforcement fibers, efficiently characterizing misalignments. Delaminations and debonding
result in discrete reflections and transmission losses from specific material depths.
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Figure 1: Schematic representation of Ultrasonic Testing [18]

Conversely, porosity leads to the scattering of ultrasonic waves rather than discrete reflections, thus causing transmis-
sion losses [8]. Studies have demonstrated that the attenuation of waves propagating perpendicular to CFRP plies can
yield crucial information for assessing and interpreting interlaminar quality. Both time domain and frequency domain
signal processing techniques are employed to distinguish defect echoes from the multiple reflections occurring within
the composite. This aids in localizing defects and enhances the probability of detecting them [18–21]. To address the
challenges associated with rough surfaces and non-parallel layers in multi-material joints, a novel signal post-processing
method has been developed [22]. A common technique employed in such scenarios is ultrasonic immersion testing, which
involves coupling sound waves through a liquid medium to inspect the material. This method is particularly effective
where there is a significant mismatch between air and solid materials [23, 24]. Typical frequencies used depend on the
composite layer being inspected. Frequencies as low as 0.5 MHz are used for inspecting composites up to 50 mm thick,
such as glass/epoxy materials. Swept frequencies ranging from 0.4 to 1.0 MHz have been employed to inspect 25.4 mm
thick Glass Fiber Reinforced Polymer (GFRP) composites. Additionally, frequencies between 100 kHz and 400 kHz
using air-coupled ultrasound have proven effective for inspecting 48 mm thick glass fiber/polyester resin composites [25].
Despite its extensive applications, ultrasonic testing encounters several limitations. For instance, a shadow effect can
obscure larger delaminations near the surface, as these large discontinuities reflect sound and reduce visibility below
the delamination [15]. Furthermore, UT faces significant challenges in detecting discontinuities within non-homogeneous
materials, such as popular honeycomb composites, due to the mismatch between air and solid materials [15].

3 Acoustic Emission
Acoustic Emission (AE) is an inspection method that utilizes the sound waves generated by a material under stress to
detect flaws. These sound waves, known as stress waves, interact with any discontinuities within the material, altering
their amplitude and speed. Inspectors detect these changes to locate flaws. The working principle of AE is illustrated in
Figure 2 [26]. Figure 2 depicts pictographically the principle of AE. In composite materials, events such as fiber breakage,
matrix cracking, and fiber misalignment lead to the sudden release of stress waves [27–29]. AE techniques utilize a series
of piezoelectric interdigital transducers or sensors to capture these stress waves. These sensors convert the stress waves
into electrical signals, which can then be analyzed by inspectors. AE is distinct because the stress waves are emitted by
the material itself, not from an external source. This technique not only records displacement data but also monitors
the dynamic processes within a composite material, tracking the evolution of specific defects and providing valuable
information during fatigue testing [30].

Figure 2: Principle of Acoustic Emission Testing [31]

Features extracted from the AE waveform, typically in the time range specified in studies [27, 31, 32], along with AE
spectra [33], are crucial for Non-Destructive Testing of composite structures. These features can facilitate a classification
system that assesses the current condition of the component. However, AE testing presents several challenges. Each AE
event produces a unique stress wave that cannot be halted or replicated. For example, the slow growth of a crack might
generate a weak signal, whereas a rapid expansion of a similar crack could produce a more pronounced, albeit temporary,
signal [34]. The data collected during AE testing can vary, with amplitude signals being the most common.
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The range of ultrasound frequencies used in AE spans from 20 kHz to 1 MHz. Processing and analyzing this data
requires specific expertise and is time-consuming. Overlaps in the amplitude distributions can also complicate the
correlation with specific damage mechanisms. To address these challenges, researchers have explored multiple parameters
to enhance damage analysis, such as the duration or frequency of amplitude signals [35, 36], cumulated event count
[37, 38], and energy [39]. Additionally, microscopy is often used to confirm damage modes and ensure accurate analysis.
Several ASTM standards govern the use of AE in testing composite materials: ASTM E1067 for examining glass fiber-
reinforced plastic tanks/vessels under a maximum internal pressure of 1.73 MPa; ASTM E1118 for composite pipes under
pressures up to 35 MPa; ASTM E2191 for filament wound composite pressure vessels tested up to 68.9 MPa; ASTM
E2076 for composite fan blades; and ASTM E2661 for materials containing continuous high modulus fibers greater than
20 MPa, such as plate-like and flat composite structures in aerospace applications [40].

4 Eddy Current Testing (ECT)
Eddy current testing (ECT) is an electromagnetic testing method that utilizes electromagnetic induction to inspect
surface and sub-surface flaws in composite materials. Recent studies have demonstrated that eddy currents can be
employed to review conductive composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and metal matrix
composites. ECT is classified into two types: pulsed ECT and remote ECT. Pulsed ECT is utilized to detect flaws in
conductive materials. It has been shown to be effective for inspecting conductive composite materials like metal-matrix
composites and CFRP [6]. Eddy currents are particularly well-suited for detecting low-energy impact damage, thermal
damage, fiber damage with or without matrix cracking, and other types of damage affecting the fibers in the sample
material. In CFRPs, ECT measurements specifically respond to carbon fibers [41–43]. The principle of ECT is based
on the fluctuation of the magnetic field caused by eddy currents. Figure 3 [44] illustrates a typical ECT set-up, which
consists of two circuits: a primary and a secondary circuit. In this set-up, the primary circuit is connected to an AC
supply, establishing a primary fluctuating magnetic field that induces eddy currents in the experimental object. These
eddy currents generate a secondary magnetic field that interferes with the primary magnetic field, thereby impacting the
current flowing through the coil. Changes in the eddy currents alter the current configuration caused by the secondary
magnetic field, consequently modifying the primary current. This variation results in a change in the impedance reading,
indicating a discontinuity.

ECT employs both high and low frequencies, each generating different fields. The High-Frequency Eddy Current
Technique (HFECT) was developed to visualize fiber orientation, fiber fraction changes, resin-rich regions, delamination,
and impact damage in CFRP composites [45]. HFECT is better suited for less conductive materials. When high
frequencies, such as 50 MHz or above, are used, only near-surface defects can be described due to limited penetration
depth to the top few plies below the sample surface [41]. Conversely, low-frequency ECT is more commonly used
for sandwich structures, allowing for a higher evaluation of the sample material’s integrity at lower frequencies. The
development of a high-precision low-frequency ECT up to 250 kHz enabled the identification and visualization of several
defects, including fiber orientation, misaligned fiber bundles, cracks, delamination, and impact damage in scanned images
[46].

Despite its capabilities, ECT has limitations in non-destructive testing for detecting surface and sub-surface defects
in CFRPs due to its limited penetration depth. Interpreting measured signals can be challenging, as distinguishing
interlaminar fractures from delamination can be difficult. This method is applicable only to composites made of conductive
fibers, such as carbon fiber, and is often modified to work with less conductive structures [15]. The lift-off effect, caused
by variations in the distance between the probe and the test sample, as well as the need to consider the surface status,
refers to changes in the mutual inductance between the excitation coil and the test sample [47].

Figure 3: Schematic diagrams of Eddy Current Testing (ECT) set-ups showing primary and secondary magnetic fields,
eddy currents, and typical crack detection scenarios [44].
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5 Shearographic Testing (ST)
Shearography is a laser-based optical technique [48]. To introduce image shearing in digital shearography, a shearing
device must be placed in front of the camera. This setup allows light reflected from two distinct object points to
interfere at a single point in the image plane [49]. Various shearing instruments, including an optical wedge or biprism,
a Mach-Zehnder interferometer [50], and an updated Michelson interferometer, have been used in digital shearography
evaluations. The modified Michelson interferometer is the most popular shearing device due to its simple structure and
ease of adjusting the shearing amount and orientation.

The conventional shearographic configuration in Figure 4 [49] produces interference at point P and determines the
shearing amount using a modified Michelson interferometer. By slightly moving mirror 1, the shearing effect can be
achieved. Point P on the sensor plane can then receive light waves from locations P1 and P2 on the object’s surface.
A speckle pattern, also known as a speckle interferogram, is produced when these light pulses collide, and the resulting
pattern is recorded by a CCD camera and stored in the computer. Further improvements can be achieved using a loading
system and quantitative evaluation methods.

There are four shearographic methods that utilize a loading system to inspect composite materials: Pressure Shearog-
raphy, Heat Pulse Shearography, Vibration (Acoustic) Shearography, and Vacuum Shearography. Shearography is widely
adopted in aeronautics for evaluating composite parts. When used in the aerospace sector, Shearography offers several
advantages, such as high speed and real-time monitoring of large composite panels [51, 52]. Due to these benefits, Shearog-
raphy is currently used for Non-Destructive Testing (NDT) on various aircraft, including the NASA space shuttle, the
F-22, the F-35 JSF, the Airbus, the Cessna Citation X, and the Airbus [53].

Shearography is primarily employed to detect debonding or the initiation of delamination, as stress concentrations
around a particular defect intensify the failure risk of composites [54–59]. However, Shearography has significant dis-
advantages, such as the difficulty in characterizing fiber breakage, matrix cracking, or matrix/fiber debonding (i.e.,
microscopic to mesoscopic damage mechanisms). Additionally, its sensitivity to environmental disturbances makes it
challenging to apply in industrial operations [60].

To help identify specific defects, Shearography is sometimes combined with other non-destructive evaluation methods
[61]. Utilizing double pulse laser illumination (spatial stage modulation) and stroboscopic laser (temporal stage modu-
lation) can also enhance damage localization in Shearography [62]. Both excitation techniques are employed to detect
delaminations; however, the latter method yields better results due to noise reduction in the maps of the temporal phase
modulation. Research indicates that fuzzy neural analysis can significantly improve the ability to identify delamination
in composite materials [63].

Figure 4: Schematic diagrams of Shearographic Testing (ST) set-ups showing image shearing using a modified Michelson
interferometer [49].

6 Infra-Red Thermography (IRT)
Infra-Red Thermography (IRT) is a technique that uses thermal distributions to map and measure infrared energy
emissions from an object. Infrared energy, which is electromagnetic radiation with longer wavelengths than visible light,
is emitted by every object with a temperature above absolute zero [64]. Over the past few decades, IRT has rapidly
advanced with improvements in infrared cameras, data acquisition, and processing methodologies. It offers capabilities
such as non-contact, non-invasive, real-time measurement, high resolution, and the ability to cover large areas [65].

In IRT testing, a thermal gradient is produced due to varying emissivity coefficients when thermal energy diffuses
through an object and encounters material defects such as porosity, matrix cracking, delaminations, and inclusions. This
thermal gradient can be used to assess the damage [66]. A surface temperature map of the structure under examination is
obtained by analyzing the thermal output of the material in the infrared electromagnetic band of the employed detector
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(infrared camera), as shown in Figure 5 [67]. Consequently, it is feasible to identify flaws in composites, especially if their
thermal properties differ significantly from those of the base material.

IRT-based Non-Destructive Testing (NDT) has been widely used in both Boeing and Airbus for structural health
monitoring to ensure the functionality of their composite products. NASA has utilized IRT for many years to examine
manned flight vehicles during orbit inspection [68]. Numerous researchers have also explored the use of IRT to quickly ex-
amine large aerospace components, including jet engines, spacecraft parts and their subsystems, and aircraft primary and
secondary structures [69–72]. Current field research is investigating the development of robotized line scan thermography
methods to inspect large composite structures [71, 73].

IRT is typically classified into two types: ”passive” and ”active” thermography [74]. In passive thermography (PT),
thermal radiation is directly emitted from the test body’s surfaces under ambient conditions and then observed. In
active thermography (AT), a heating or cooling flow is generated and propagated into the test object to reveal internal
structures. Thermal responses in accordance with the Stefan-Boltzmann law are then detected and documented. Recent
advancements in signal processing techniques and equipment have made the AT method more practical and efficient than
the traditional PT strategy [75, 76].

Active IRT is generally divided into optically stimulated thermography [77], ultrasonic stimulated thermography
[77–79], eddy current stimulated thermography [80], and metal-based thermography, depending on the external heat
source used [81]. The most frequently used setup in the IRT of aerospace structures is optically stimulated thermography.
Pulsed or transient thermography is a popular optical technique for aerospace applications. Research has shown that local
material non-uniformities, which cause small variations in thermal energy, can prevent thermography from accurately
measuring the entire extent of the delaminated zone [82]. Additionally, it has been documented that the temperature
contrast on composite laminates diminishes as the orientation angles between adjacent layers become more varied [83]. As
a result, cross-ply or multi-angle ply laminates are more challenging to examine for flaws than unidirectional laminates,
particularly when thick laminates made from CFRP are reinforced with high thermal conductivity fibers [84].

While higher aspect ratios are anticipated in aerospace applications, the aspect ratio of the defects at the detection
limit is between two and three [85]. Therefore, IRT is restricted to near-surface damage identification with low aspect
ratios in both impact-induced and machining-induced defects. The technique is not particularly sensitive to in-depth
damage and microcracks with sizes varying from ten microns to a few millimeters [70, 86].

Figure 5: Schematic diagrams of Infra-Red Thermography (IRT) showing thermal distributions and defect detection [67].

7 X-Ray Radiography
X-ray radiography is based on the characteristics of radiation, which are waves or electrons emitted from a source that
travel through a medium. The Beer-Lambert rule explains how X-rays of a particular energy interact with matter. In X-
ray radiography, short wavelength electromagnetic radiations (high-energy X-ray photons) penetrate different materials
to produce a shadowgraph image of the test object. The attenuation of X-ray radiation as it travels through the
object toward an X-ray detector is affected by the test object’s density, path length, and level of X-ray absorption.
Conventional radiography is widely used to identify non-planar defects in aerospace composites, such as solid inclusions,
fiber misalignment, and matrix cracking, provided the orientation of these defects is not perpendicular to the X-ray beam
[61, 87].

Conventional radiography uses penetrating X-rays to examine the internal structure of composite materials. A 2D
image, known as an X-radiograph, is created by projecting the attenuated beam onto an X-ray-sensitive film or a digital
scanner. The X-radiograph displays the attenuation of X-rays due to variations in electron density along the beam path.
Radiography can detect translaminar cracks and delamination, as well as meso- and macroscale damage to composite
laminates [88]. However, it primarily enables the detection of cracks developing in a plane perpendicular to the path of
the beam [89]. Figure 6 illustrates the principles of gamma radiography [90].

For thin components (less than 5 mm in thickness), low-voltage radiography is used, while thicker parts are better
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suited for gamma-ray radiography. When defects overlap and are superimposed onto a planar surface, they cannot
be separated, and depth quantification is not feasible without multiple radiographs. Applying a dye penetrant before
inspection can enhance the ability to identify microscale damage mechanisms, such as matrix cracking, if the cracks
are linked to the material’s surface. Guild et al. [91] used penetrant-enhanced radiography to track the initiation and
propagation of matrix cracking in pre-notched carbon/epoxy laminates subjected to tensile fatigue loading. Additionally,
Atas et al. [92] identified and monitored the development of subcritical damage processes in CFRP joints.

More sophisticated methods, such as X-ray Computed Tomography (XCT or CT) and X-ray Computed Laminography
(XCL or CL), have been developed from traditional X-radiography to visualize interior features within components and
obtain digital data on their three-dimensional geometries. These techniques shift the scale of Non-Destructive Testing
(NDT) from macroscopic to microscopic, showing promise for resolving the current challenges in monitoring highly
sensitive aerospace materials.

X-ray tomography (µCT) differs from traditional radiography methods in that it relies on the computerized recon-
struction of a series of radiographs taken by rotating the sample at controlled angular steps. The resulting data is coded
in greyscale and corresponds to 3D maps of elementary basic elements (referred to as voxels). The differences in the
linear attenuation coefficients of the material’s constituents (such as matrix, fiber, and porosity), where elements with
high atomic numbers are the most absorbent and elements with low atomic numbers or low density, such as air cavities,
are the least absorbent, are reflected in the grey level contrasts within the 3D images produced by standard laboratory
µCT equipment. Consequently, if the difference between the linear absorption coefficients is large enough, it is possible
to distinguish between the various components of the composite and locate the damage.

Figure 6: Schematic diagrams illustrating the principles of gamma radiography [90].

8 Discussion
The advancements in nondestructive testing (NDT) techniques have significantly enhanced the ability to monitor and
evaluate composite materials. This review provides a comprehensive analysis of various NDT methods, highlighting
their unique strengths, limitations, and applications. The novelty of this review lies in the comparative analysis and
integration of advanced data processing techniques, such as machine learning and deep learning, with traditional NDT
methods. One of the most significant advancements in NDT is the incorporation of machine learning (ML) and deep
learning (DL) algorithms. These technologies can process large datasets, identify patterns, and predict outcomes with high
accuracy. Integrating ML and DL with NDT methods enhances defect detection, characterization, and evaluation. For
instance, algorithms can be trained to recognize specific defect signatures in ultrasonic testing (UT) or interpret complex
thermal patterns in infrared thermography (IRT). This capability reduces human error and increases the reliability of
NDT evaluations. The integration of multiple NDT techniques addresses the limitations of individual methods, providing
a more comprehensive assessment of composite materials. For example, combining X-ray radiography with ultrasonic
testing allows for detailed internal and surface defect analysis. The synergy of different NDT techniques enables the
detection of a broader range of defects, from surface cracks to deep-seated flaws, thus ensuring more robust structural
health monitoring. The development of smart materials with embedded sensors is another novel aspect discussed in this
review. These materials can continuously monitor their own condition and provide real-time data on stress, strain, and
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other critical parameters. Embedded sensors enhance the capabilities of traditional NDT methods by offering continuous
and in-situ monitoring, leading to more accurate and timely assessments of material health. Technological advancements
have also led to the creation of portable and handheld NDT devices. These innovations allow for in-field inspections,
providing real-time data that can be crucial for immediate decision-making. Portable devices, coupled with advanced data
processing techniques, can perform complex analyses on-site, reducing the need for laboratory-based testing and speeding
up the inspection process. Despite these advancements, several challenges remain. The complexity of interpreting data
from integrated NDT techniques, the need for high-resolution imaging, and the development of cost-effective solutions are
ongoing research areas. Future directions include the further integration of AI and machine learning, the development of
more sophisticated sensors, and the creation of standardized protocols for multi-NDT applications. These advancements
will enhance the accuracy, efficiency, and applicability of NDT methods in various industries.

9 Conclusion
Nondestructive testing (NDT) techniques are essential resources for testing and assessment at various points in a composite
product’s lifecycle. While every technique has potential, only a few can fully diagnose potential flaws and the evolution
of damage in a composite system. The strengths and weaknesses of the reviewed NDT methods are shown in Table
1. Selecting the appropriate NDT method can be challenging, yet it is crucial for preserving the structural integrity of
composite materials and structures. The applications and capabilities of each reviewed NDT technique for identifying
and evaluating defects and damage evolution in composite materials/structures are summarized.

As the volume and structural complexity of composite parts increase, the use of multi-NDT techniques is becoming
more common for maintaining structural integrity, and research in this area is expanding significantly. The initial
development and application of various NDT techniques were driven by demands in the aerospace industries, which
have rapidly expanded to other fields. The main techniques used in the composite industries are X-ray radiography,
acoustic emission, ultrasonic testing, infrared thermography, shearography, eddy current testing, and thermography.
NDT techniques based on ultrasound, IRT, and AE are adaptable and cost-effective solutions that have been used
extensively in many industrial fields and academic research.

GHz waves can penetrate opaque materials and detect internal defects and damage. Innovation and technological
advances in small and portable NDT devices will continue to play a significant role in future NDT equipment, offering
in-service inspections to aid the decision-making process. Although X-rays are highly effective NDT instruments with
high resolution, the method is more expensive than other non-destructive testing approaches due to its reliance on ionizing
radiation. The accessibility and cost of radiation facilities are further hampered by their limited locations and availability.

When used in non-destructive testing for identifying surface and subsurface defects in CFRPs, ECT has several
drawbacks. For instance, it can be challenging to differentiate between interlaminar fractures and delamination from
measured signals. This technique is limited to composite materials composed of conductive fibers. Considering the com-
plex nature of flaws and damage identification in composites, the future development of NDT techniques will increasingly
depend on smart inspection systems with high precision and effectiveness in data processing. Machine learning and deep
learning show tremendous potential for the NDT evaluation of composite materials. Artificial intelligence–based systems
allow quick decision-making without human interference. Numerous automated diagnostics for various NDT techniques
have been developed, using algorithms for the automatic identification and recognition of flaws or damage, or by coding
artificial neural networks.

NDT techniques have made significant progress, but much more work is required to provide quick and inexpensive
systems for both data processing and equipment to support their practical application in industry.
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