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Abstract

Cloud computing has become a cornerstone of modern IT infrastructure, offering scalable and flexible resources.
However, efficient resource management, particularly cloudlet scheduling, presents a significant challenge due to its
NP-hard nature. This paper introduces a novel heuristic-based cloudlet scheduling algorithm aimed at minimizing
execution time and improving load balancing in cloud computing environments. We detail the development and
implementation of the algorithm, along with a simulation setup using the CloudSim toolkit to evaluate its performance
against existing methods. Results from extensive simulations demonstrate that the proposed algorithm consistently
reduces turnaround times, thus optimizing resource allocation. The findings suggest that our approach can significantly
impact cloud computing efficiency, paving the way for improved service provider offerings and user satisfaction. The
implications of these advancements are discussed, alongside potential directions for future research in dynamic cloud
environments.
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1 Introduction

The landscape of computational technology has been profoundly transformed by the advent of cloud computing, which has
redefined the paradigms of resource allocation, scalability, and computing on demand [1–3]. As businesses and individuals
increasingly rely on cloud services for a wide range of applications, the efficiency and effectiveness of these services have
become paramount [4]. Enterprises such as Amazon, Google, and Microsoft have pioneered this domain, yet despite
their advancements, significant challenges persist [5]. Cloud computing environments are characterized by their ability to
offer flexible and cost-effective resources, shifting from traditional capital expenses to an operational expenditure model
[6–8]. This shift necessitates sophisticated strategies to manage the balance between cost and performance, requiring
innovations in cloud resource scheduling and management. The scheduling of computational tasks, commonly referred to
as cloudlets, within a cloud environment is a complex and critical issue [9]. The execution time of these cloudlets directly
impacts the overall system performance and user satisfaction [10, 11]. The inherent difficulty of this scheduling problem,
classified as NP-Hard, demands efficient heuristics to navigate towards optimal solutions [12, 13]. Current literature
on cloudlet scheduling strategies reveals various approaches, ranging from static algorithms that prioritize quick and
straightforward deployment to dynamic algorithms that adapt to changing system states [14, 15]. While progress has
been made, there remains a gap in developing an algorithm that can consistently minimize execution times across diverse
cloud environments.
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This research seeks to bridge this gap by proposing a novel heuristic-based cloudlet scheduling algorithm. Our
approach is distinguished by its consideration of both the heterogeneity of cloud resources and the varying requirements
of cloudlets. The algorithm’s design aims to enhance task execution efficiency while ensuring a balanced distribution of
the computational load. The validation of this algorithm is conducted through extensive simulations using the CloudSim
toolkit, which provides a controlled environment to evaluate its performance against established scheduling methods
[16–18]. The anticipated contributions of this research are multifaceted. Primarily, it introduces an innovative scheduling
algorithm that demonstrates improved performance in execution time reduction. Additionally, it offers insights into the
economic and operational benefits that such an algorithm can provide for cloud service providers. By enabling providers
to optimize resource allocation, the proposed algorithm may lead to more competitive service offerings and higher levels
of customer satisfaction. Furthermore, the study’s findings have the potential to influence future research directions in
cloud resource management, particularly in dynamic and heterogeneous computing environments. THus, the present
article contributes a novel perspective to the field of cloud computing by addressing a critical challenge with a unique
solution, setting the stage for further advancements in cloud resource scheduling.

2 Related Work

The landscape of cloudlet scheduling is marked by diverse methodologies and algorithms, each tailored to meet specific
performance metrics and operating environments. This section reviews several notable scheduling strategies that have
influenced the current study.

Batch Mode Scheduling: One of the predominant approaches in task scheduling is batch mode. The Resource-
Aware Scheduling Algorithm (RASA) is particularly noteworthy, reducing makespan effectively in grid environments [19,
20]. Similarly, the Reliable Scheduling Distributed in Cloud Computing (RIDC) algorithm has been developed to optimize
processing time within cloud settings [21–23]. Furthermore, an Optimal Model for Priority-based Service Scheduling
Policy has been proposed, targeting high Quality of Service (QoS) and throughput, showcasing the algorithm’s aptitude
for enhancing cloud computing services [24]. Another contribution in batch mode scheduling is the Extended Max-
Min scheduling, which integrates Petri Net for task execution and fosters efficient load balancing in cloud environments
[25, 26]. In addition, the Improved Cost-Based Algorithm for task scheduling has been introduced, which enhances the
computation-communication ratio, an essential factor in cloud task scheduling [27, 28]. Moreover, investigations into
gang scheduling have revealed improvements in performance and cost by incorporating job migration and addressing
starvation in cloud systems [29].

Dependency Mode Scheduling: Departing from batch mode, the Dependency mode scheduling focuses on task
interdependencies [30, 31]. A notable algorithm in this category is the Priority-Based Job Scheduling Algorithm, which
aims to minimize the finish time of tasks, demonstrating its efficiency in cloud environments [? ]. Another significant work
is the Optimistic Differentiated job scheduling system that harmonizes the QoS demands of cloud users with the profit
maximization for service providers, representing a balance of user and provider interests [32]. These varied approaches
highlight the dynamic nature of cloudlet scheduling. Each algorithm brings a unique perspective to solving the complex
problem of scheduling in cloud computing, with an emphasis on different aspects such as QoS, load balancing, cost-
effectiveness, and processing time optimization. The proposed algorithm in this study draws inspiration from these
methodologies, aiming to further the advancement of cloudlet scheduling through an innovative heuristic-based approach.

3 Methods

3.1 Overview of the Proposed Approach

The proposed approach seeks to address the intricate challenge of cloudlet scheduling in cloud computing, which stands
as a pivotal component in the orchestration of cloud resources. Efficient scheduling is crucial as it directly impacts the
performance and cost-effectiveness of cloud services, influencing both provider revenues and user satisfaction. The core
objective of this research is to minimize the total execution time of cloudlets, which in turn can significantly improve
operational efficiency and achieve a more balanced load across cloud resources. In pursuit of this goal, the approach
introduces a novel scheduling algorithm that transcends traditional methods by incorporating advanced heuristics. These
heuristics are designed to account for the heterogeneity of cloudlets and virtual machine capabilities, optimizing the
allocation process in a manner that aligns with real-world cloud performance metrics. This optimization not only seeks
to enhance individual task execution but also aspires to harmonize the cumulative load distribution, thereby mitigating the
risk of resource bottlenecks and underutilization. The anticipated outcome is a robust, adaptable scheduling framework
that delivers tangible improvements in cloudlet processing times while maintaining a high level of resource utilization
efficiency. This approach is expected to contribute to the field of cloud computing by offering a scalable solution to
the cloudlet scheduling problem, ultimately facilitating the management of increasingly complex and demanding cloud
environments.
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3.2 Algorithm Details

The core of the proposed approach is the cloudlet scheduling algorithm, delineated in Algorithm 1, which systematically
minimizes the execution time of cloudlets on a pool of virtual machines (VMs). The algorithm leverages a heuristic that
prioritizes the assignment of cloudlets to the VMs based on the estimated turnaround time, thereby optimizing the overall
scheduling process. The pseudocode presented in Algorithm 1 outlines the sequential steps undertaken by the scheduling
mechanism. The process begins with the initialization of the minimum time variable, which is set to infinity, and a null
assignment to the selected VM for each cloudlet. It then iterates over each VM to compute the projected turnaround
time for the cloudlet on that VM. The cloudlet is assigned to the VM that offers the shortest turnaround time, ensuring
that the cloudlet’s execution is as efficient as possible. After each assignment, the state of the VM is updated to reflect
its new load, thereby preparing it for the next iteration of scheduling.

Algorithm 1 Cloudlet Scheduling Algorithm

1: procedure CloudletScheduling(Cloudlets, V Ms)
2: for each cloudlet ∈ Cloudlets do
3: minTime←∞
4: selectedVM ← null
5: for each vm ∈ VMs do
6: time← CalculateTurnaroundTime(cloudlet, vm)
7: if time < minTime then
8: minTime← time
9: selectedVM ← vm

10: end if
11: end for
12: AssignCloudletToVM(cloudlet, selectedVM)
13: UpdateVMState(selectedVM)
14: end for
15: end procedure

The CalculateTurnaroundTime function is essential to the proposed scheduling algorithm. It estimates the time
required for a cloudlet to execute on a given virtual machine. This estimation takes into account the processing power of
the VM, the length of the cloudlet, and the VM’s current load. The function is defined as Algorithm 2:

Algorithm 2 Heuristic Estimation of Cloudlet Turnaround Time

function CalculateTurnaroundTime(cloudlet, vm)
mips← vm.MIPS
length← cloudlet.length
currentLoad← vm.currentLoad
availableMips← mips− currentLoad
if availableMips ≤ 0 then

return ∞ ▷ VM is currently fully loaded
else

executionT ime← length/availableMips
return executionT ime

end if
end function

This function provides a heuristic estimate rather than an exact computation, reflecting the inherent uncertainty and
variability in cloud computing environments. The actual turnaround time may vary based on network latency, VM state
changes, and other runtime conditions not accounted for in the static simulation. The AssignCloudletToVM function
formalizes the allocation of the cloudlet to the selected VM, and UpdateVMState revises the VM’s status, accounting for
its new workload. These functions work in concert to optimize the scheduling process and are detailed in the subsequent
subsections.

3.3 Simulation Setup

To evaluate the effectiveness of the proposed cloudlet scheduling algorithm, a series of simulations were carried out using
the CloudSim toolkit, a widely recognized framework for modeling and simulation of cloud computing infrastructures
and services.
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The simulation environment was meticulously configured to reflect a typical cloud computing setup with the following
parameters:

� Host Configuration: The simulation environment included 5 hosts, each equipped with 4 processing elements
(PEs). These PEs represent the individual CPUs within a host.

� Processing Power: Each processing element was assigned a capacity of 2000 MIPS (Million Instructions Per
Second), totaling 8000 MIPS per host. This metric is crucial as it determines the speed at which each host can
execute cloudlets.

� Cloudlets: The simulation managed 100 cloudlets, which are abstractions of cloud-based application workloads.
Each cloudlet has its unique computational requirements and characteristics.

� Virtual Machines (VMs): A diverse set of virtual machines was deployed to ascertain the algorithm’s per-
formance under various configurations. Each VM’s specification, including its processing power, memory, and
bandwidth, was systematically varied to simulate different scheduling scenarios.

This setup aimed to create a controlled yet versatile cloud environment to assess the algorithm’s responsiveness to
different workloads and resource availability scenarios. Such a comprehensive simulation framework is essential for the
validation of the proposed scheduling algorithm’s adaptability and efficiency.

Figure 1: Cloud Computing Environment Architecture.

The architecture of the cloud computing environment utilized for the simulations is depicted in Figure 1. This
schematic representation outlines the interaction between the user, the datacenter border, the cloud information service,
and the virtual machines (VMs) hosted within the datacenter, demonstrating the multi-layered structure of the cloud
environment.

3.4 Assumptions

To ensure a controlled environment for the simulation and evaluation of the proposed scheduling algorithm, certain
assumptions were adopted. These assumptions are necessary to simplify the model, allowing for a clear analysis of the
algorithm’s performance without the variability inherent in real-world cloud environments. The simulation assumes:

� Static Cloud Environment: The cloud infrastructure is considered to be static throughout the simulation
process. This implies that the number of virtual machines (VMs) and hosts remains constant, with no additions
or removals during runtime. This assumption is made to focus on the scheduling algorithm’s performance without
the confounding effects of a dynamic infrastructure.
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� Job Independence: All cloudlets, representing discrete computational jobs, are treated as independent units
of work. There is no inter-cloudlet communication or dependencies, which simplifies the scheduling process and
ensures that the performance of each cloudlet can be evaluated in isolation.

These assumptions are standard in simulation studies for cloud scheduling, providing a clear baseline from which
the efficacy of the scheduling algorithm can be assessed. However, it is acknowledged that real-world cloud computing
environments are dynamic and cloudlets may have interdependencies, which could be considered in future work.

3.5 Performance Metric

The efficacy of the cloudlet scheduling algorithm is evaluated using a primary performance metric that reflects the
scheduling process’s objectives. Turnaround Time is the chosen metric, defined as the duration between the submission
of a cloudlet and the completion of its execution on a VM. This metric is critical, as it captures the efficiency of the
scheduling algorithm in terms of both execution speed and resource utilization. Minimizing the turnaround time indicates
an effective scheduling strategy that enhances the throughput of the cloud infrastructure. The focus on Turnaround Time
aligns with the core goal of the proposed scheduling algorithm, which is to minimize cloudlets’ execution time. Future
studies may explore additional metrics, such as cost, energy consumption, and overall resource utilization, to provide a
more comprehensive evaluation of the scheduling performance.

4 Results and Discussion

4.1 Simulation Outcomes

The simulation environment was configured with 5 hosts, each having 4 processing elements and a capacity of 2000 MIPS.
A total of 100 cloudlets were processed, with varying lengths and virtual machine configurations. The simulation results,
summarized in Table 1, indicate a significant reduction in turnaround time when using the proposed algorithm compared
to an existing algorithm.

Table 1: Comparison between existing and proposed algorithm based on the number of virtual machines.

No. of VM Existing Algo Proposed Algo

4 5000.1 4250.09
8 2600.09 2200.1
16 1400.1 1200.1
32 800.1 650.1

The proposed algorithm demonstrates an improved performance in terms of lower turnaround times, which suggests
that the heuristic approach employed can effectively reduce the computational complexity of job matching from NP-hard
to polynomial.

4.2 Extended Simulation Analysis

To further validate the performance of the proposed algorithm, additional simulations were performed with a fixed number
of 8 VMs, varying the number of cloudlets. The new simulation environment included hosts with equal specifications
as before, but VM power was divided with half having 1000 MIPS and the rest 2000 MIPS. The results, presented in
Table 2, show that the proposed algorithm consistently outperforms the existing algorithm across different numbers of
cloudlets. Figure 2 illustrates the comparative performance improvement of the proposed algorithm over the existing one.

Table 2: Comparison between existing and proposed algorithm based on the number of cloudlets.

No. of Cloudlets Existing Algo Proposed Algo

50 1400.1 1200.1
100 2600.09 2200.1
150 3800.1 3250.09
200 5000.1 4250.1
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Figure 2: Graphical representation of performance comparison between existing and proposed algorithms.

These findings reinforce the superiority of the proposed algorithm in scenarios with both varying VM and cloudlet
numbers, showcasing its robustness and scalability. The simulation results provide strong evidence that the proposed
cloudlet scheduling algorithm is superior to the existing algorithm in terms of turnaround time. This suggests that the
application of advanced heuristics can significantly optimize cloud resource allocation, which is particularly relevant in
the context of cloud computing where efficient resource management is crucial for performance and cost management.
The improved efficiency could have a notable impact on cloud service providers by enabling them to serve more users with
the same amount of resources, potentially leading to increased revenues and customer satisfaction. It also opens the door
to more sustainable cloud computing practices, as optimized resource usage directly correlates with energy consumption
and environmental impact.

5 Conclusion

This study addressed the challenge of cloudlet scheduling in cloud computing, a critical factor in the performance and cost-
effectiveness of cloud services. The proposed heuristic-based scheduling algorithm demonstrates significant improvements
in execution times, as evidenced by the simulation results. These findings underscore the potential of heuristic approaches
in overcoming the complexities of NP-hard scheduling problems within static cloud environments. By enabling more
efficient resource utilization, the algorithm not only enhances the performance of cloud services but also contributes to the
broader goal of sustainable and economical cloud computing. Future research directions include adapting the algorithm
for dynamic cloud environments and exploring its applicability in real-world scenarios. The continued evolution of cloud
computing demands such innovative solutions, and this work contributes a valuable perspective to the ongoing discourse
in cloud resource management.
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