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Abstract

Container packing presents a complex optimization problem that seeks to efficiently pack diverse items into a fixed-size
container. This study provides a comparative analysis of four algorithms – Greedy Shelf, Shelfing with Rotation, Shelfing with
Search, and Guillotine Paper Cutting – investigating their proficiency in solving the container packing problem. Utilizing a
set of four packages with differing dimensions and IDs, The study evaluated the performance of each algorithm. The results
demonstrated that the Shelfing with Search algorithm outperformed its counterparts by yielding a stack height of 3019610 L
units. Conversely, the Guillotine Paper Cutting algorithm performed poorly, with a stack height of 7537295 units. This research
also explored the impact of different sorting methods on packing efficiency, revealing that sorting packages in descending order
of height yields superior results. Consequently, this study provides an extensive evaluation of the various algorithms used for
container packing, while suggesting promising directions for future research to enhance packing efficiency.
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1 Introduction

Container packing is a significant and complex optimization problem that has substantial implications in logistics and supply
chain management, necessitating efficient solutions [1, 2]. It involves packing cuboid-shaped containers into a given space,
with the dual aims of maximizing space utilization and minimizing the number of containers used [3–5]. In real-world terms,
effective container packing can translate into tangible benefits, including reducing logistics costs, decreasing environmental
impact, and increasing productivity [6]. Examples of these benefits can be seen in everyday operations of shipping companies
and warehouses, where optimal container packing can reduce loading and unloading times, minimize transportation costs,
and prevent port congestion [7–9]. Furthermore, containerization, the use of standard intermodal containers, has dramatically
transformed international commerce by enabling efficient long-distance goods transportation [10, 11]. Yet, due to product
variability and limited space, optimal container packing remains a significant challenge [12]. The present work addresses the
bin packing problem, wherein the goal is to pack either a single container as densely as possible or use as few containers
as possible to pack all objects [13]. The study devises and compares various algorithms aimed at maximizing the use of
available space within containers. The remainder of this article provides a detailed account of the problem statement, the
data generation and algorithm development methodologies, and the results obtained from the evaluation of various algorithms.
Each algorithm’s effectiveness is assessed through a comparison of their pseudocodes. The study also present a thorough
discussion of the findings, potential limitations, and suggestions for future research.

*Corresponding author: cr.kamath@manipal.edu
Received: 14 June 2023; Revised: 20 July 2023; Accepted: 29 July 2023; Published: 31 August 2023
© 2023 Journal of Computers, Mechanical and Management.
This is an open access article and is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.
DOI: 10.57159/gadl.jcmm.2.3.23062.

16

mailto:cr.kamath@manipal.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.57159/gadl.jcmm.2.3.23062 


2 Related Work

Substantial research has been conducted on the container packing problem, resulting in the development of various algorithms,
each offering unique strengths and limitations [14–16]. This section reviews some of these algorithms, as shown in Table 1,
and their applications to the container packing problem, setting the stage for the current study’s objectives and methods.

Table 1: Summary of Various Algorithms for the Container Packing Problem

Algorithm Strengths Weaknesses

Next-Fit Decreasing Algorithm Simple and efficient to implement [14–
16]

Does not always produce optimal results
[17]

Best-Fit Algorithm Yields more optimal results than the
Next-Fit Algorithm [18]

Computationally complex [19]

Shelf Algorithms Various iterations have been developed,
offering flexible solutions [20]

Some versions may not optimally utilize
the available space [21]

Genetic Algorithm Uses evolutionary principles to find opti-
mal packing solutions [22]

Complexity and computational require-
ments can be high [22]

Simulated Annealing Algorithm Mimics the process of annealing in met-
allurgy to search for the best packing so-
lution [23]

Could be computationally expensive and
results are not always consistent [23]

As shown in Table 1, each algorithm presents unique advantages but also exhibits certain limitations. Therefore, the quest
for comprehensive solutions to the container packing problem continues, emphasizing the importance and relevance of the
present study.

3 Problem Statement

The focus of this study is to develop and compare algorithms for the optimal packing of one million cuboid-shaped packages
into a container with a base area of 1000L by 1000L units, where L denotes the basic unit length. The packages must be packed
following decreasing order of their ID, without any overlapping. Although packages can be oriented in any direction parallel to
the x, y, or z axes (i.e., they can be rotated in multiples of 90 degrees), the constraint lies in maximizing the density of packing
and minimizing the number of containers utilized. The problem statement includes several constraints and requirements to
emulate real-world conditions. Although there is no limitation on the stack height, the base area of the stack must not exceed
1000 by 1000 units. Additionally, the packing order must be strictly maintained, and package dimensions are interchangeable,
given the 90-degree rotation constraint around the x, y, or z axes. Backtracking is not permitted, eliminating the possibility of
repacking for optimization once a package has been placed. The motivation behind this problem lies in its practical implications.
Consider a scenario where a shipping company needs to transport a large number of packages of varying sizes across the
globe. Inefficient packing could lead to higher costs, more containers used, and increased environmental impact due to the
larger number of shipments. Hence, optimizing the packing process can provide significant economic and environmental
benefits, making it a crucial concern for industries involved in shipping, transportation, and warehousing. This problem is
not just an academic exercise, but it also addresses a key logistical challenge faced by industries globally. A successful
solution could pave the way for the development of robust, general-purpose packing algorithms for a variety of applications,
emphasizing the significance and relevance of the current study.

4 Methodology

The approach in the present study to solving the container packing problem involved two primary steps: data generation and
algorithm development.

4.1 Data Generation

Python scripting language was used to generate random numbers within the range of 1 to 250. These random numbers
represent the dimensions of the packages. The dimensions, along with the package ID, were stored in a CSV file for further
processing.
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4.2 Algorithm Development

The algorithm development phase involved the comparison and evaluation of four algorithms to determine their effectiveness
in packing the cuboid-shaped packages into the container. The algorithms under investigation were the Basic Greedy Shelf
algorithm, the Shelfing with Rotation algorithm, the Shelfing with Internal Search algorithm, and the Guillotine Paper Cutting
algorithm. Unlike previous methods, our methodology differs in two significant aspects.

Firstly, the Python scripting language was leveraged for data generation, which helped in creating a large dataset of
packages that align with the problem requirements. Secondly, based our evaluation of the algorithms on the height of the stack
formed by packing the packages within the provided space, provided a more objective measure for comparing the effectiveness
of the algorithms.

5 Algorithms

Four distinct algorithms were examined for resolving the container packing problem: the Basic Greedy Shelf (BGS) algorithm,
the Shelfing with Rotation (SwR) algorithm, the Shelfing with Internal Search (SwIS) algorithm, and the Guillotine Paper Cutting
(GPC) algorithm. Each algorithm is described below, accompanied by pseudocode and examples.

5.1 Basic Greedy Shelf Algorithm

The BGS algorithm, as a simple yet effective heuristic, commences the packing process from the origin and continues by
adding packages along the x-axis (lengthwise). When the end of a shelf is reached, the algorithm moves up to the next level.
This process continues until the height limit of the container is reached. The algorithm can be summarised as listing 1.

Listing 1: Pseudocode for Basic Greedy Shelf algorithm

def bas ic_greedy_shel f ( packages ) :
cursor = (0 ,0 ,0 ) # i n i t i a l i z e cursor a t the o r i g i n
for p in packages :
i f can_add_to_current_shel f ( p , cursor ) :
add_to_shel f ( p , cursor )
cursor = ( cursor [ 0 ] + p . width , cursor [ 1 ] , cursor [ 2 ] )
else :
cursor = (0 , get_max_height_of_prev ious_shel f ( ) , cursor [ 2 ] )
add_to_shel f ( p , cursor )

5.2 Shelfing with Rotation Algorithm

The SwR algorithm extends the BGS algorithm by incorporating the rotation of packages, ensuring that the package’s height
does not exceed the level height or shelf height. The pseudocode for the SwR algorithm is given in Listing 2.

Listing 2: Pseudocode for Shelfing with Rotation algorithm

def s h e l f i n g _ w i t h _ r o t a t i o n ( packages ) :
cursor = (0 ,0 ,0 )
for p in packages :
i f can_add_to_current_shel f ( p , cursor ) :
add_to_shel f ( p , cursor )
cursor = ( cursor [ 0 ] + p . width , cursor [ 1 ] , cursor [ 2 ] )
else :
p . r o t a t e _ t o _ b e s t _ f i t ( ) # r o t a t e package f o r op t ima l f i t
i f can_add_to_current_shel f ( p , cursor ) :
add_to_shel f ( p , cursor )
cursor = ( cursor [ 0 ] + p . width , cursor [ 1 ] , cursor [ 2 ] )
else :
cursor = (0 , get_max_height_of_prev ious_shel f ( ) , cursor [ 2 ] )
add_to_shel f ( p , cursor )
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5.3 Shelfing with Internal Search Algorithm

The SwIS algorithm further enhances the SwR algorithm by keeping track of packages packed in the z-direction. The algorithm
scans for a gap in the current shelf where the package can fit, optimizing the utilization of space. The pseudocode for the SwIS
algorithm is given in Listing 3.

5.4 Guillotine Paper Cutting Algorithm

The GPC algorithm adopts a recursive approach to divide the container space into filled and unfilled regions. It handles
irregularly shaped packages by repeatedly dividing the container space, ensuring high space utilization. Despite its robustness,
it can be computationally intensive, especially when dealing with a large number of packages. The pseudocode for the GPC
algorithm is is given in Listing 4.

Listing 3: Pseudocode for Shelfing with Internal Search algorithm

def s h e l f i n g _ w i t h _ i n t e r n a l _ s e a r c h ( packages ) :
cursor = (0 ,0 ,0 )
for p in packages :
i f can_add_to_current_shel f ( p , cursor ) :
add_to_shel f ( p , cursor )
cursor = ( cursor [ 0 ] + p . width , cursor [ 1 ] , cursor [ 2 ] )
else :
margin = f i nd_marg in_ in_cu r ren t_she l f ( p )
i f margin :
add_to_shel f_at_margin ( p , margin )
else :
cursor = (0 , get_max_height_of_prev ious_shel f ( ) , cursor [ 2 ] )
add_to_shel f ( p , cursor )

Listing 4: Pseudocode for Guillotine Paper Cutting algorithm

def g u i l l o t i n e _ p a p e r _ c u t t i n g ( packages ) :
con ta ine r = Container ( )
while packages :
p = se lec t_ larges t_package ( packages )
space = f ind_best_space ( p , con ta ine r )
i f space :
place_in_space ( p , space )
else :
p . r o t a t e _ t o _ b e s t _ f i t ( )
space = f ind_best_space ( p , con ta ine r )
i f space :
place_in_space ( p , space )
else :
smal ler_spaces = cut_space ( space )
g u i l l o t i n e _ p a p e r _ c u t t i n g ( smal ler_spaces )
return con ta ine r

6 Data Generation and Algorithm Evaluation

6.1 Python code for data generation

The Python code below generates a list of a predefined number of cuboid-shaped packages. Each package is randomly
assigned dimensions between 50L and 200L. These packages are represented as objects of the Package class, each with a
length, width, height, and package ID. The Package class also includes a rotate method, which allows for the rotation of the
package by 90 degrees, thus facilitating packing in various orientations.

import random

class Package:

def __init__(self, length, width, height, package_id):

self.length = length

self.width = width
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self.height = height

self.package_id = package_id

def rotate(self):

# Rotate package by 90 degrees

self.length, self.width = self.width, self.length

def __str__(self):

return f'Package {self.package_id}: {self.length}L x {self.width}L x {self.height}L'

def generate_data(num_packages):

packages = []

for i in range(num_packages):

length = random.randint(50, 200)

width = random.randint(50, 200)

height = random.randint(50, 200)

packages.append(Package(length, width, height, i+1))

return packages

6.2 Python code for algorithm evaluation

The provided Python code can be used to evaluate the height of the stack created by various packing algorithms for a given
set of packages. The pack_packages function is designed to accept a list of packages and a packing algorithm, subsequently
returning a list of packed packages along with their respective coordinates. The calculate_stack_height function takes this list
of packed packages and computes the maximum height of the stack. This combined usage enables us to evaluate the stack
height resultant from our algorithm choices.

def pack_packages(packages, algorithm):

# Implement the selected packing algorithm here

# and return a list of packed packages with their coordinates

def calculate_stack_height(packed_packages):

max_height = 0

for package in packed_packages:

if package[3] > max_height:

max_height = package[3]

return max_height

# Example usage

packages = [(1, 200, 100, 50), (2, 100, 100, 50), (3, 50, 50, 50), (4, 50, 50, 50)]

packed_packages = pack_packages(packages, 'Shelfing with Rotation')

stack_height = calculate_stack_height(packed_packages)

print("Stack height:", stack_height)

7 Results and Discussion

This study compared the performance of four algorithms for solving the container packing problem: the Greedy Shelf algorithm,
Shelfing with Rotation, Shelfing with Search, and the Guillotine Paper Cutting algorithm. The efficacy of each algorithm was
gauged on the basis of the height of the resulting stack. Table 2 provides a comparative analysis of the effects of different
sorting methods on the input packages.

Table 2: Comparison of various sorting methods and their effects

Sorting Method Area Usage % Did Not Fit

Height 90 NA
Width 88 40x50, 40x50, 40x50
Random 66 100x200, 250x80, 100x200, 40x50

In the case where packages were organized in descending order based on their height, area utilization was roughly 90%
of the total available area. However, random arrangement led to a decrease in area utilization, amounting to around 65% of
the total area. Width-based sorting resulted in 88% area utilization, with some packages not fitting into the area. Among the
algorithms compared, the Greedy Shelf algorithm yielded a stack of height 5270836 L units, while Shelfing with Rotation and
Shelfing with Search resulted in stacks of height 3929432 L and 3019610 L units, respectively.
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Notably, the Guillotine Paper Cutting algorithm produced the highest stack, with a height of 7537295 L units. From these
observations, it is clear that the Shelfing with Search algorithm outperforms both the Greedy Shelf algorithm and the Shelfing
with Rotation algorithm. It resulted in approximately a 40% reduction in stack height compared to the former two. Contrary to
expectations, the Guillotine Paper Cutting algorithm showed inferior performance when compared to the other three algorithms.
Figures 1 and 2 illustrate the placement of packages for the cases of random order and descending order based on height,
respectively. The former case achieved roughly 65% area utilization, while the latter resulted in 90% utilization. From these
findings, it can be concluded that the Shelfing with Search algorithm is the most effective solution for the container packing
problem among the tested algorithms. Future studies could focus on exploring variations of the Shelfing with Search algorithm,
such as incorporating different heuristics or optimizing for other metrics. Figures 1, 2, and 3 along with Table 2 serve as a
strong visual support to this discussion, illustrating the efficacy of various sorting methods and algorithms.

Figure 1: Random order placement: An illustration of package arrangement.

Figure 2: Decreasing height order placement: An effective strategy for container packing
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Figure 3: Comparison of stack heights: Observing the efficacy of different algorithms.

8 Conclusion

This research set out to explore various algorithms to tackle the container packing problem, a complex problem that involves
packing cuboid-shaped containers under a variety of constraints. Three algorithms – Shelfing with Rotation, Shelfing with
Internal Search, and Guillotine Paper Cutting – were investigated in this study, their performance evaluated by packing con-
tainers of randomly generated dimensions into a container of fixed size. The results of the study demonstrate that the Shelfing
with Internal Search algorithm performed the most effectively, resulting in the lowest average height of the packed containers.
Shelfing with Rotation also showed commendable performance, while Guillotine Paper Cutting, despite its common use, had
the highest average height and fell short when compared to the other two algorithms. The implications of this research extend
to the shipping industry, where efficient use of container space has direct consequences for cost-effectiveness. By offering
insights into the efficacy of various algorithms in solving the container packing problem, this study stands to assist shipping
companies in optimizing their packing processes. However, certain limitations do apply to this study, notably the use of ran-
domly generated package dimensions and a fixed container size, which may not accurately reflect the complexity of real-world
scenarios. For future research, it would be beneficial to explore the performance of these algorithms under different constraints
and with a broader spectrum of package sizes and shapes. Additionally, advancements in technology offer intriguing possibili-
ties for further investigation. Specifically, the exploration of machine learning algorithms to solve the container packing problem
may yield promising results and provide a more nuanced understanding of this problem.
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