
Volume 4 Issue 6
Article Number: 25240

Detecting Depression using Twitter Data by incorporating Hybrid Feature
Representation: A comparative machine learning approach

Parveen Kumari1 and Alpana Jijja∗ 1

1Sushant University, Gurugram, Haryana, India 122003

Abstract

Depression is a critical global mental health challenge that often remains undiagnosed due to the limitations and
subjectivity of conventional screening techniques. The growing use of social media platforms offers new avenues for
understanding human emotions, as individuals increasingly share their thoughts, moods, and experiences online.
Leveraging this vast digital footprint, the present study introduces a machine learning (ML)-driven approach for
the automated detection of depression using Twitter data. A comprehensive dataset comprising 205,271 posts was
collected and carefully preprocessed through multiple natural language processing (NLP) techniques, including
tokenization, stop-word elimination, lemmatization, and sentiment polarity assessment, to extract meaningful textual
features. Six distinct ML models were trained and evaluated: Support Vector Classifier (SVM), Logistic Regression,
Decision Tree, AdaBoost, Naïve Bayes, and K-Nearest Neighbors (KNN). Various performance metrics, including
accuracy, precision, recall, and F1-score, were employed to assess the efficiency of each developed model. Among the
tested models, Logistic Regression achieved the highest accuracy (92%), followed by SVM with 90%, while KNN
performed comparatively lower with 70%. The results indicate that linear and ensemble-based classifiers are more
effective than distance-based models in managing high-dimensional text data. Overall, this study offers a robust
comparative evaluation of ML algorithms for depression detection and underscores the transformative potential of
NLP and social media analytics in scalable, data-driven mental health monitoring systems.
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1. Introduction

Depression is a severe mental illness that adversely affects emotions, cognition, and daily functioning. It is among the
leading causes of disability worldwide and is closely linked with suicide risk. Timely detection is critical, yet traditional
diagnostic approaches, such as clinical interviews and Patient Health Questionnaire scores, often lack reliability and
scalability [1]. Depression causes individuals to face difficulties in fulfilling their daily obligations, pushing them into a
cycle of escalating depression. A significant challenge is that many individuals suffering from depression are unaware of
their condition, leading to a variety of deteriorating physical and mental consequences. Social networking sites are now
commonly utilized by individuals to share their ideas and feelings, as well as to connect with others. While sites like
Myspace, Facebook, Reddit, Instagram, and Twitter offer avenues for diverse communication, they also have negative
impacts on society and individuals [2]. Suicidal thoughts and other psychological problems are serious concerns, and
there is a strong correlation between major suicide attempts and depression [3, 4].
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The World Health Organization’s 2021 data highlights a substantial number of suicides, particularly in middle- and
low-income countries [5]. Prompt intervention and therapy are essential for individuals facing severe depression or
suicidal thoughts. Detecting signs of suicidal risk and depression can be challenging, but analyzing social media
posts may assist in identifying those in need of help. Medical intervention and therapy are crucial in supporting
individuals coping with depression. People experiencing depression frequently share their emotions and thoughts on
social media, underscoring the importance of online support and counselling services. The creation of accurate online
detection systems to recognize content related to depression and suicide risk is essential for the welfare of social media
users [6–8]. Automated identification systems that detect and address depressive posts on social media can safeguard
vulnerable individuals and foster a positive online community. Research on utilizing natural language processing (NLP)
and data extraction for detecting suicide risk and depression poses notable challenges in the field. Recent studies
have utilized computational learning and computational neural network models to detect depression, incorporating
natural language processing features such as feelings, opinions, accessibility, and melancholy-embedded features [9–11].
Similarly, research on predicting the likelihood of suicide has used statistical machine learning (ML) and artificial
neural network computing methods to support vulnerable individuals [8, 12].

Despite extensive research on depression detection, existing approaches are limited by their reliance on small or
domain-specific datasets, a lack of systematic comparison across multiple classifiers, and insufficient exploration of
feature engineering techniques that combine sentiment polarity with tokenized text features. This creates a gap in
developing accurate, scalable, and generalizable models for detecting real-world depression. This study introduces
a machine learning framework that combines NLP methods with various classification algorithms, such as Logistic
Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT), AdaBoost, and K-Nearest
Neighbors (KNN). A comprehensive dataset comprising 2,05,271 Twitter posts was utilized to assess and compare
the effectiveness of these models in detecting depressive indicators. The primary contributions of this research can be
summarized as follows:

• Construction of a large-scale dataset of depressive and non-depressive tweets.

• Implementation of comprehensive preprocessing steps (tokenization, stop-word removal, lemmatization, sentiment
polarity scoring).

• Comparative evaluation of six supervised machine learning algorithms.

• Identification of the most accurate classifier for text-based depression detection.

2. Literature Survey

Research on detecting depression and suicidal risk from social media has grown substantially, leveraging NLP and
ML techniques. Early studies primarily relied on traditional feature extraction procedures, including TF–IDF and
tokenization, to capture linguistic signals of distress. For instance, Desmet and Hoste [6] applied bag-of-words with
genetic algorithms for suicide-related content, while Vioules et al. [7] identified suicide-risk posts on Twitter by analyzing
emotional shifts. Similarly, Gao et al. [8] used YouTube comments to detect suicidal intent with classifiers such as SVM,
AdaBoost, and Random Forest. These works established the feasibility of applying supervised classifiers to mental
health detection.

More recent studies have explored advanced neural models. Trotzek et al. [11] applied deep learning with word
embeddings (GloVe, fastText) to Reddit posts, achieving strong accuracy in early detection of depression. Lin et
al. developed the SenseMood model, which incorporates contextual BERT embeddings with a CNN for multimodal
depression classification. Burdisso et al. [13] introduced the SS3 algorithm, which outperforms several traditional
classifiers in the multilabel classification of distress signals. Other approaches, such as federated learning with RoBERTa
and BERT or hybrid frameworks like SDCNL, further highlight the promise of privacy-preserving and context-aware
models [14, 15]. Almouzini and Alageel [16] found LIBLINEAR to be effective for Arabic Twitter data, achieving 87.5%
accuracy. The data preprocessing involved steps such as count vectorization, word tokenization, stop word removal,
and part-of-speech (POS) tagging [17–19]. Several libraries and tools were employed for data preprocessing, including
NLTK, TextBlob, and WEKA [20, 21].

Another researcher [22] introduced a model for assessing suicide risk by applying NLP and deep learning methods,
analyzing social media data from 418 individuals who had attempted suicide. In a similar vein, Caicedo et al. [23]
investigated suicide attempts using a supervised classifier on a dataset of 3,472 messages to identify cases of suicide risk.
He and Cao [24] proposed a technique for predicting depression through deep convolutional neural networks, achieving
a 91% accuracy rate on the AVEC2013 and AVEC2014 datasets. Furthermore, Priya et al. [25] studied depression
assessment by collecting data from 348 participants through Google Forms, reaching an accuracy of 85%, with the
Naïve Bayes classifier performing best among the five classifiers assessed.
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Zaghouani [26] conducted an analysis of 3,200 Twitter posts to forecast depression among youth, utilizing NLP tools
and ML algorithms. Sharma et al. [27] applied ML and NLP methods to evaluate suicidal tendencies in young people
using Twitter data from Kaggle, achieving an accuracy of 88% with the TF–IDF technique. They noted that classifier
performance varied across different datasets. In 2018, another researcher proposed an ML method for sentiment analysis
based on the Sentiment140 dataset from Stanford University [28]. Various ML algorithms were evaluated, with Logistic
Regression achieving the highest accuracy of 82.59%, while in certain cases SVM demonstrated better performance.
Laoh et al. [29] studied hotel reviews to classify sentiments as either positive or negative, discovering that SVM reached
an accuracy of 94%. They also evaluated the recursive neural tensor network (RNTN) classifier on the same dataset,
which yielded an accuracy of 85

In a study by Tadesse et al. [30] on the Reddit platform, researchers utilized NLP and ML techniques to predict
depression. Their findings revealed that the multilayer perceptron (MLP) classifier achieved an accuracy of 91%. The
analysis encompassed 1,841 posts, with 1,293 pertaining to depression and 548 categorized as standard posts. Rustam
et al. [31] assessed multiple supervised models for sentiment analysis of COVID-19 tweets, finding that ensemble
methods, such as Extra Trees, outperformed others. Similar outcomes were noted by Hassan et al. [32], who observed
SVM outperforming Naïve Bayes and Maximum Entropy for depression-related text.

From this review, it is evident that while ML and NLP methods can effectively detect depressive tendencies, there is a
lack of studies that construct and evaluate large-scale balanced datasets, systematically compare multiple classifiers
under the same conditions, and investigate the impact of combining traditional linguistic features with sentiment
analysis. To address these gaps, the current study includes a comprehensive framework that preprocesses and integrates
TF–IDF features with sentiment polarity scores, evaluates six classifiers on a dataset of over 205,000 tweets, and
identifies the suitability of each model. This comparative evaluation contributes to the development of scalable,
interpretable, and accurate systems for detecting depression in social media data.

3. Materials & Methods

The methodology starts with the collection of data and preprocessing, followed by sentiment analysis and classification
using multiple ML algorithms. Each model is trained and tested, and their accuracy is compared to identify the most
effective classifier. The general framework of the methodology used in this study is summarized in Figure 1.

Figure 1: General framework of the methodology

3.1. Data Collection

The dataset was obtained from Twitter by collecting user posts that matched depression-related search queries and
hashtags. The resulting dataset consists of 205,271 sentences, with 103,653 classified as non-depressed and 101,618 as
depressed. Data visualization was achieved using a count plot, as depicted in Figure 2, which shows the distribution of
tweets from depressed and non-depressed individuals.
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Figure 2: Distribution of depressed and non-depressed tweets

During initial import, two null entries were removed; during preprocessing, approximately one-third of raw records were
excluded because they were news, third-party references, or exact duplicates (see Section 3.2). To increase reproducibility
and to help readers assess possible sampling effects, we report the sampling frame and basic provenance: collection tool
(Twitter scraping scripts / API), search keywords/hashtags, language filter (English), and inclusion/exclusion rules. We
recognize that sampling from online social platforms can introduce non-trivial biases (for example, over-representation
of hyperactive accounts, topical skew, and temporal effects).

Figure 3 shows the sentiment polarity distribution, showing negative skew for depressed posts and positive skew
for non-depressed posts. Although the sentiment polarity histogram shows clear differences between depressive and
non-depressive posts, a visibly overlapping region appears between polarity scores of approximately −0.3 and +0.1.
This overlap occurs because a number of depressive posts contain neutral or mildly positive language, often reflecting
indirect or subdued expressions of distress.

Figure 3: Sentiment polarity distribution showing negative skew for depressed posts and positive skew for non-depressed
posts

Similarly, some non-depressive posts include mildly negative words due to casual complaints or situational frustrations
that are not indicative of clinical depression. The presence of this overlap highlights an important limitation of sentiment
polarity as a standalone feature: sentiment signals can be ambiguous and insufficient to fully separate the two classes.
This explains why sentiment-based features alone do not yield high accuracy and why combining TF–IDF features
with sentiment polarity results in stronger classification performance. The overlapping region shown in the histogram,
therefore, provides useful insight into model misclassifications and illustrates the need for hybrid feature engineering.
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Figure 4 and Figure 5 show the most frequent words in depressed and non-depressed tweets, respectively. Studies
have shown that missing data and sampling strategies can alter subgraph or network measures, and more generally,
distort observed distributions in social datasets. To mitigate these concerns, we removed exact duplicates and retweets,
performed language filtering, and applied preprocessing rules to exclude posts referencing third-party news items.

Figure 4: Most frequent words in depressed tweets

Figure 5: Most frequent words in non-depressed tweets

3.2. Labeling Procedure for Depressive and Non-Depressive Posts

To develop a reliable ground truth, each tweet in the dataset was assigned a binary label (depressed or non-depressed)
using a combined lexicon-based and rule-based strategy validated by prior literature. First, tweets were filtered using
clinically and psychologically relevant keywords and hashtags frequently associated with depression (#depressed,
#sadness, #mentalhealth, #suicidal, "I feel hopeless", "I want to end it"). These keywords were derived from DSM-V
symptom terminology, previously published depression lexicons, and widely used benchmark datasets in mental-health
NLP research. All posts matching these terms were initially marked as candidate depressive posts.
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Second, to reduce false positives, a multi-stage filtering approach was applied:

• Contextual Screening: Tweets that used depressive words metaphorically ("I’m depressed because my team
lost") or non-personal statements were excluded.

• Sentiment Polarity Check: Posts with polarity ≤ −0.2 (negative to strongly negative) were retained as
depressive; polarity ≥ 0.2 contributed to the non-depressive category unless contradictory expressions were
present.

• Manual Verification: A random sample of 3,000 tweets (1.5% of the dataset) was manually checked by two
annotators to verify labeling consistency, achieving a Cohen’s κ score of 0.87, indicating strong agreement.
Disagreements were resolved through discussion.

Tweets that did not contain emotional or psychological indicators, general motivational posts, news, or third-party
references were labeled as non-depressive. After preprocessing, the final dataset included 101,618 depressive and
103,653 non-depressive posts. This systematic combination of depression-related lexicons, contextual filtering, sentiment
polarity scoring, and partial manual validation ensured a robust and reliable labeling process.

3.3. Data Pre-processing

Data preprocessing plays a crucial role in ensuring the quality of textual features and improving the accuracy of
classifiers. In this study, a systematic pipeline was implemented consisting of seven stages: normalization, tokenization,
stop-word removal, empty string removal, lemmatization, feature extraction, and sentiment polarity scoring. The steps
are described below.

Data Normalization

During the initial stage, null entries and irrelevant characters were removed. All text was converted into lowercase, and
punctuation marks were eliminated, as they do not carry semantic value for depression detection. For example, in
a sentence such as "I am sad!!!", the exclamation marks were removed, retaining only the meaningful tokens. This
process reduces noise in the dataset and ensures consistency for feature extraction. To remove irrelevant characters, a
predefined set of punctuation symbols was eliminated during normalization, as summarized in Table 1.

Table 1: List of punctuation symbols removed during normalization

Symbol Symbol Symbol Symbol Symbol Symbol Symbol

! " # $ % & *
- / : ; < @ +
( [ \ ] ˆ _ ,
‘ { } ~ > ? .

Data Tokenization

This includes splitting sentences into smaller meaningful units. In this study, sentence-to-word tokenization was applied,
where each word becomes an individual feature. Formally, the tokenization of a sentence S can be expressed as

S = {w1, w2, w3, . . . , wn} (1)

where wi represents the ith token in the sentence.

Removal of Stop Words

Stop words (e.g., is, the, a, of ) are common words that occur frequently but contribute little to classification. A
customized stop-word list was developed to eliminate such terms, thereby reducing dimensionality. Formally, for a
document d containing terms t1, t2, . . . , tn, the reduced set after stop-word removal is expressed as

d′ = d \ {ti | ti ∈ SW} (2)
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where SW is the predefined stop-word set. For effective dimensionality reduction and to retain only meaningful terms,
a customized stop-word list was prepared. The collection of stop words excluded during preprocessing is presented in
Table 2.

Table 2: Customized collection of stop words

Stop Words Stop Words Stop Words Stop Words Stop Words Stop Words Stop Words Stop Words

where almost therein front throughout here other the
these part with his nobody show have same

something full moreover hereafter besides due yourselves ourselves
at there together had thy whereby perhaps no

whether thru via its what do did ever
hereupon since would somehow enough whole along thereby

never sometime except nevertheless wherever down whose name
amongst forty all take it not can less

than thereafter are until nothing in but any
formerly below during her put neither me otherwise
under call whence between against quite you still
sixty move make eight keep many anywhere must

somewhere above back using how herein after without
several already beforehand about into she too anyhow
done bottom much why yourself meanwhile whereas not

cannot further most has indeed from herself every
an then thither very although on ten once
also used hundred among yet namely who first

anything when ever behind they someone three none
latter however our should become everyone latterly own
eleven again he in each side anyway over
those always beside six else sometimes alone as

Empty String Removal

The elimination of empty strings is essential when using classifiers, as they can adversely affect memory usage and
potentially reduce accuracy. Consequently, all empty strings were removed from the dataset to enhance memory
efficiency and improve classifier performance.

Lemmatization

Lemmatization reduces inflected words to their base or dictionary form (lemma). For instance, "crying" → "cry" and
"better" → "good". Unlike stemming, lemmatization preserves linguistic correctness. This improves the quality of
feature vectors and reduces sparsity. Formally, for a word w, lemmatization returns the base form as expressed in
Eq. (3):

Lemma(w) = base_form(w) (3)

Feature Extraction using TF–IDF

Once the text was cleaned and tokenized, it was converted into numerical vectors by the Term Frequency–Inverse
Document Frequency (TF–IDF) method. The Term Frequency (TF), Inverse Document Frequency (IDF), and TF–IDF
are determined using Eq. (4), Eq. (5), and Eq. (6), respectively:

TF(t, d) =
f(t,d)∑

t′∈d f(t′,d)
(4)

IDF(t) = log

(
N

1 + nt

)
(5)

TF–IDF(t, d) = TF(t, d)× IDF(t) (6)

where f(t,d) is the frequency of term t in document d, N is the total number of documents, and nt is the number of
documents containing term t.
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Sentiment Polarity Scoring

To enrich feature representation, sentiment polarity was calculated for each tweet using the TextBlob library. Polarity
values range between −1 (highly negative) and +1 (highly positive) and are expressed using Eq. (7). If the polarity
is less than zero, it comes under the category of depression, and if the polarity is greater than zero, it comes under
the non-depressive category. On the other hand, if the polarity is equal to zero, it comes under the neutral sentiment
category. The polarity values were concatenated with TF–IDF vectors, creating a hybrid feature space that captures
both linguistic and emotional signals.

Polarity(s) ∈ [−1, 1] (7)

3.4. Train-Test Split Strategy

Following the implementation of the aforementioned preprocessing techniques, a dataset was constructed for the purpose
of predicting depression. To ensure the reliability of the results, data partitioning is a crucial component of machine
learning. In this context, 80% of the data was designated for training, while the remaining 20% was allocated for
evaluating the model’s performance.

3.5. Proposed Model

Naïve Bayes

To enhance interpretability, the Naïve Bayes model is represented with a diagram that explicitly illustrates the
conditional independence assumption, the central concept behind NB. In this representation, the target class (Depressed
/ Non-Depressed) is the parent node, and each feature (token, TF–IDF dimension, sentiment score) is conditionally
independent given the class label. This assumption allows the joint probability to be decomposed using Eq. (8). Figure
6 presents an expanded schematic of the Naïve Bayes classifier illustrating the conditional independence assumption,
where each text feature (tokens, TF–IDF components, sentiment score) is modeled as independent given the class label.
This provides a more accurate depiction of the probabilistic structure used in NB classification. This model relies on
the simplifying assumption that all features are independent, which allows efficient computation of class probabilities.
Despite this assumption not always holding for real-world text data, NB remains computationally efficient and a strong
baseline for text classification tasks. In this graph, the nodes represent the features and the class label, while the edges
indicate the conditional dependencies between the features and the class label. Its benefits include straightforward
implementation, a relatively fast learning curve, and typically positive outcomes [33–36].

Figure 6: Expanded schematic of the Naïve Bayes classifier illustrating the conditional independence assumption

P (S | t) = P (t | S)P (S)

P (t)
(8)

The expression P (S | t) denotes the posterior probability of the class, where S represents the target and the predictor
t is an attribute. Conversely, P (S) signifies the prior probability of the class and P (t | S) represents the likelihood,
which is the probability of the predictor given the class. P (t) represents the prior probability of the predictor.
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Support Vector Machine

The SVM is a popular algorithm known for its simplicity and versatility in handling both classification and regression
tasks. In SVM, each data point is plotted in a space where each feature is a dimension. So, if the data has three
features, each point is placed in a three-dimensional space. SVM generates a linear function that classifies new data
points: an output of 1 indicates that the data point belongs to class 1, while an output of −1 indicates class 2. The
margin of the SVM ranges from −1 to 1. In this application, SVM is used to classify data into two categories: depressed
and non-depressed. The SVM creates a hyperplane that differentiates between these two classes. It is trained on a
dataset of tweets, allowing it to accurately classify new tweets.

In a binary classification setting with two classes labeled as +1 and −1, the training dataset comprises input feature
vectors x along with their associated class labels y. The equation that represents the linear hyperplane can be expressed
as Eq. (9) and Eq. (10):

WTx+ b = 0 (9)

di =
WTx+ b

∥w∥
(10)

The vector W shows the direction perpendicular to the hyperplane. The value b shifts the hyperplane away from the
origin along the direction of W . The term ∥w∥ denotes the Euclidean norm of the weight vector, which is the same as
the norm of the normal vector W . This formulation is important for determining the distance of a data point from the
decision boundary.

Table 3 presents the classification report of the Support Vector Classifier (SVC), showing precision, recall, F1-score,
and support for both depressive and non-depressive classes.

Table 3: Classification report of the Support Vector Classifier

Class Precision Recall F1-score Support

Non-Depressed (0) 0.95 0.85 0.89 20,179
Depressed (1) 0.87 0.95 0.91 20,879

Accuracy 0.90 41,058
Macro Avg 0.91 0.90 0.90 41,058
Weighted Avg 0.91 0.90 0.90 41,058

Decision Tree

A decision tree classifier is a type of ML method that uses a tree-like structure to make decisions. It works by asking a
series of questions about the input features and following the branches based on the answers until it reaches a final
decision or prediction. The tree is built by splitting the data into subsets according to feature values, with each split
creating a decision node. The terminal nodes, known as leaf nodes, represent the class labels or predictions. This type
of classifier is widely used because it is simple, easy to understand, and works well with both numerical and categorical
data.

Gini Impurity: This measure indicates how likely it is to make a wrong prediction if the class of a new data point is
randomly guessed, based on the class distribution in the dataset. It is calculated using the overall distribution of the
classes, as expressed in Eq. (11), where pi denotes the probability of an instance being assigned to a particular class.

Gini = 1−
n∑

i=1

(pi)
2 (11)

Entropy: This metric measures the degree of uncertainty or impurity in the dataset. It is expressed using Eq. (12),
where pi is the probability of an instance being classified into a specific class.

Entropy = −
n∑

i=1

pi log2(pi) (12)

Information Gain: This metric assesses the reduction in entropy or Gini impurity that results from splitting a dataset
based on a specific attribute. It is represented using Eq. (13), where Di refers to the subset of D that results from the
split by an attribute.

Information Gain = Entropyparent −
n∑

i=1

(
|Di|
|D|

× Entropy(Di)

)
(13)
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Logistic Regression

Logistic Regression (LR), commonly known as logit regression, is a machine learning algorithm grounded in statistics
and is extensively used for both regression and classification tasks. The key feature of this algorithm is the logistic
function, a sigmoid curve that converts real-valued inputs into a range between 0 and 1. Binary LR focuses on two
possible outcomes, multinomial LR addresses three outcomes, and ordinal LR is designed for more than three outcomes.
Among these categories, binary LR is the most commonly utilized, especially when the output is binary, such as
determining whether a person is depressed. This method provides a clear understanding of the data and establishes a
relationship between the various attributes being analyzed.

Table 4 presents the classification report of the Logistic Regression model, showing precision, recall, F1-score, and
support for depressive and non-depressive classes.

Table 4: Classification report of the Logistic Regression model

Class Precision Recall F1-score Support

Non-Depressed (0) 0.94 0.89 0.92 20,179
Depressed (1) 0.90 0.95 0.93 20,879

Accuracy 0.92 41,058
Macro Avg 0.92 0.92 0.92 41,058
Weighted Avg 0.92 0.92 0.92 41,058

Adaptive Boosting

AdaBoost is a popular ML method that combines several simple models (weak learners) to create one strong model. It
improves overall performance by focusing on instances that were misclassified by earlier learners. Weak learners are
trained sequentially, and the final prediction is derived from a weighted combination of their outputs. At iteration t,
the classifier weight is computed using Eq. (14):

αt =
1

2
ln

(
1− εt
εt

)
(14)

where εt is the classification error of the weak learner.

K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a distance-based classifier. For a test sample x, the k nearest neighbors are identified
using a distance metric, commonly the Euclidean distance, as expressed in Eq. (15):

d(x, xi) =

√√√√ n∑
j=1

(xj − xij)2 (15)

3.6. Hyperparameter Tuning

For each classifier, the predictors comprised tokenized and lemmatized text features transformed into TF–IDF vectors,
supplemented by sentiment polarity scores derived from TextBlob. Table 5 summarizes the hyperparameters employed
in training. The parameters were optimized using scikit-learn’s implementation, with most values determined through
empirical testing and preliminary grid search. For example, the SVC performed best with a linear kernel (C = 1.0),
while the Decision Tree achieved optimal results with a maximum depth of 20. The KNN classifier was evaluated with
k = 5 and Euclidean distance, but as discussed in the results section, it performed poorly compared to other classifiers.
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Table 5: Hyperparameters used in the current study

Classifier Hyperparameters Selected

LR Penalty: L2; Solver: liblinear; C: 1.0; Max iterations:
1000; Class weight: balanced; Random state: 42; TF–IDF:
max_features = 50,000, ngram_range = (1,2), sublinear_tf
= True, min_df = 3

NB Alpha: 1.0 (Laplace smoothing); Fit_prior: True; Vector-
izer: TF–IDF (same settings as LR)

SVC Kernel: linear; C: 1.0; Gamma: scale; Shrinking: True;
Probability: True; Max iterations: 5000; Random state: 42

DT Criterion: gini; Max depth: 20; Min samples split: 2; Min
samples leaf: 1; Splitter: best; Random state: 42

AdaBoost Base estimator: Decision stump (DT, max_depth =
1); n_estimators: 100; Learning rate: 1.0; Algorithm:
SAMME.R; Random state: 42

KNN n_neighbors: 5; Metric: Euclidean; Weights: uniform; Leaf
size: 30; Algorithm: auto

Shared Feature Settings TF–IDF: max_features = 50,000, ngram_range = (1,2),
min_df = 3, lowercase = True, sublinear_tf = True; Senti-
ment polarity: added as an additional numerical feature

3.7. Evaluation Metrics

To evaluate the performance of the developed models, four key metrics were utilized: accuracy, precision, recall, and
F1-score. These metrics were calculated using Eq. (16)–Eq. (19):

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1-score = 2× Precision × Recall
Precision + Recall

(19)

3.8. Computational Environment

To achieve the objectives of this study, all analyses were performed in the Python environment, utilizing its libraries
for data processing, model training, and evaluation. The development and execution of the system required specific
hardware and software specifications, including the Windows operating system, a minimum of 32 GB of RAM, and at
least 128 GB of HDD storage.

3.9. Ethical Considerations

The use of social media data for mental-health research involves important ethical obligations. In this study, all tweets
were collected exclusively from publicly accessible Twitter posts, and no private messages or protected accounts were
included. Consistent with standard ethical guidelines for social media research, no attempt was made to identify,
contact, or track individual users. All usernames, profile information, URLs, handles, and metadata that could reveal
personal identity were removed during preprocessing, ensuring complete anonymization of the dataset. The dataset was
used strictly for academic research purposes, and all analyses were conducted at an aggregate level without focusing on
any specific individual. Since the posts were publicly available and the study did not involve interaction with users
or collection of personal data, institutional review board (IRB) approval was not required as per prevailing research
ethics guidelines for studies involving publicly available textual data. Nevertheless, we adhered to the principles
of the Declaration of Helsinki, the ACM Code of Ethics, and responsible AI practices to protect user privacy and
confidentiality.
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Furthermore, we acknowledge the psychological sensitivity associated with depression-related content. The study
does not attempt to diagnose users individually but rather aims to develop generalized machine learning models for
detecting depressive linguistic patterns. The findings are intended to support early screening tools and not to replace
clinical judgment. Researchers and practitioners using similar datasets must ensure transparency, anonymization, and
non-harmful application when analyzing mental-health–related social media data.

4. Results and Discussion

4.1. Performance Metrics

The performance metrics of all classifiers are shown in Table 6 and Figure 7. Logistic Regression achieved the highest
accuracy of 92%, with balanced precision and recall, followed by SVM (90%) and Naïve Bayes (88%). Ensemble
learning (AdaBoost) achieved moderate accuracy (87%), while the Decision Tree performed slightly lower at 85%. The
KNN classifier recorded the lowest accuracy (70%), with reduced precision and recall, highlighting its limitations in
handling sparse, high-dimensional feature vectors derived from text data.

The KNN classifier achieved notably lower accuracy than LR, NB, and SVM. This discrepancy can be attributed to the
nature of KNN as a distance-based algorithm, which is highly sensitive to the dimensionality and sparsity of text data.
In the present dataset, features derived from tokenization and TF–IDF weighting produced a high-dimensional, sparse
vector space. In such scenarios, the distance metric (e.g., Euclidean distance) becomes less effective, a phenomenon
often referred to as the curse of dimensionality. Furthermore, unlike decision tree–based or probabilistic classifiers,
KNN does not build a generalized model but relies on storing all training examples, which makes it less efficient for
large-scale datasets such as the one used in this study (205,271 entries). Despite its lower performance, KNN was
included to provide a comparative benchmark. The results reaffirm that distance-based classifiers are not well suited for
large-scale depression detection tasks involving noisy social media data, where linear models (LR, SVM) and ensemble
methods (AdaBoost) consistently outperform.

Table 6: Performance matrix of all developed machine learning models

ML Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

LR 92 91 92 92
NB 88 86 87 87
SVM 90 89 90 89
DT 85 83 84 83
AdaBoost 87 85 86 85
KNN 70 68 69 68

Figure 7: Performance comparison of all machine learning models
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4.2. Confusion Matrix Analysis

To further evaluate classifier performance, Figure 8 presents the combined confusion matrices of all six algorithms. The
horizontal axis represents the predicted class, and the vertical axis represents the actual class. Each matrix shows
the distribution of predictions for depressive and non-depressive posts. Logistic Regression and SVM models achieved
strong diagonal dominance (true positives and true negatives), with relatively few false positives and false negatives,
indicating their robustness in separating depressive from non-depressive content. Naïve Bayes performed well but
showed slightly higher false negatives, meaning some depressive posts were misclassified as non-depressive. On the
other hand, Decision Tree and AdaBoost models were reasonably accurate; however, these models exhibited higher false
positives, lowering their precision compared to Logistic Regression and SVM. Among all models, KNN demonstrated
the weakest performance, with significant misclassifications. This behavior is consistent with the known sensitivity of
KNN to noisy, high-dimensional data, commonly referred to as the curse of dimensionality.

Figure 8: Confusion matrices of all classifiers

4.3. Comparative Accuracy

To evaluate the performance of the classifiers, accuracy scores were computed on the test set for all six algorithms. As
shown in Table 6, Logistic Regression achieved the highest accuracy (92%), closely followed by SVM (90%) and Naïve
Bayes (88%). AdaBoost and Decision Tree produced moderate accuracies of 87% and 85%, respectively, while KNN
exhibited the weakest performance with an accuracy of only 70%. The superior performance of Logistic Regression and
SVM can be attributed to the high-dimensional sparse nature of TF–IDF features, which favors linear classifiers. In
contrast, KNN struggles with large feature spaces, as distance metrics become less discriminative in high dimensions.
Decision Trees and AdaBoost benefited from their ability to handle non-linear boundaries but were less effective
compared to linear models.

To statistically validate these observations, pairwise McNemar’s tests were performed. The improvement of Logistic
Regression over KNN and Decision Tree was found to be significant (p < 0.01). The difference between Logistic
Regression and SVM, however, was not statistically significant, suggesting that both models are competitive for this
task. Overall, the comparative analysis demonstrates that linear models with hybrid features (TF–IDF combined
with sentiment polarity) outperform both distance-based and boosting-based classifiers, making them better suited for
large-scale social media text classification.
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4.4. ROC–AUC Analysis

To further assess the discriminative capability of the classifiers, ROC–AUC curves were plotted, as shown in Figure 9.
Logistic Regression achieved the highest AUC of 0.95, closely followed by SVM with 0.93, confirming their strong
ability to distinguish between depressive and non-depressive posts. Naïve Bayes (AUC = 0.90) and AdaBoost (AUC =
0.88) showed competitive performance, while the Decision Tree model performed moderately (AUC = 0.86). The KNN
classifier, however, lagged behind with an AUC of 0.72, reinforcing its poor suitability for high-dimensional, sparse
text data. These results align with the accuracy and F1-score analysis, highlighting that linear models and ensemble
methods are superior for depression detection on social media text streams.

Figure 9: ROC–AUC curves of the machine learning models used in the current study

4.5. Discussion of Findings

The results demonstrate that linear models (Logistic Regression and SVM) and ensemble methods (AdaBoost) provide
strong performance for depression detection from textual data. Their ability to generalize well in high-dimensional spaces
makes them suitable for large-scale social media analytics. On the other hand, distance-based methods such as KNN
are less effective, largely due to feature sparsity and dimensionality issues, while Decision Trees, although interpretable,
tend to overfit and misclassify more frequently. These findings align with previous studies where Logistic Regression
and SVM consistently outperform Naïve Bayes and tree-based classifiers in text classification tasks [31, 33, 37].

4.6. Error Analysis

To better understand the limitations of the models, an error analysis was conducted on the misclassified samples, with
a focus on the Logistic Regression and SVM models, which achieved the highest overall performance. The analysis
revealed different categories of errors, as shown in Table 7. Errors generally arise from figurative expressions, subtle
depressive cues, sarcasm, or lack of contextual information.
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Table 7: Examples of misclassified tweets and corresponding error categories

Error Category Example Tweet (Mis-
classified)

Actual Label Predicted Label Reason for Misclassifi-
cation

Figurative or non-
clinical use of de-
pressive words

"I’m depressed after my
team lost today."

Non-depressive Depressive Uses the word depressed
metaphorically; no gen-
uine psychological dis-
tress.

Subtle expression of
distress

"I don’t see the point of
anything anymore."

Depressive Non-depressive Lacks overt depressive
keywords; subtle emo-
tional cues missed by TF–
IDF features.

Sarcasm or mixed
sentiment

"I’m totally fine :) just
crying myself to sleep
again."

Depressive Non-depressive Sarcastic tone causes sen-
timent polarity to be mis-
leadingly positive.

Short, context-free
tweet

"Hopeless." Depressive Non-depressive Extremely short text pro-
vides insufficient contex-
tual information.

Ambiguous situa-
tional sadness

"Feeling low today but to-
morrow will be better."

Non-depressive Depressive Contains negative senti-
ment but reflects normal
mood fluctuation rather
than clinical depression.

Although the present study demonstrates the potential of machine learning and natural language processing for
detecting depression from social media text, several opportunities remain to strengthen and extend this line of research.
Future studies should focus on building multi-platform and multilingual datasets by incorporating posts from Reddit,
Facebook, Instagram, and regional languages to improve the generalizability of models beyond Twitter and English. In
addition, advanced deep learning architectures such as BERT, RoBERTa, LSTM, and hybrid meta-heuristic approaches
could be employed to capture contextual semantics, long-term dependencies, and explainable decision pathways, which
traditional classifiers struggle to achieve. Another promising direction is the integration of multi-modal data, combining
textual information with images, videos, and metadata such as posting frequency or network interactions, to enhance
predictive accuracy. From an application perspective, developing real-time depression screening tools such as mobile
applications or web-based dashboards can facilitate early intervention and personalized feedback. These tools should
also include clinical validation and collaboration with mental health professionals to ensure ethical, reliable, and
actionable outcomes. Finally, future research should address issues of data privacy, bias, and interpretability, as ethical
and transparent deployment of AI-driven depression detection systems is critical for building user trust and adoption
in real-world mental healthcare contexts.

5. Conclusion

The present study focused on detecting depression through machine learning and text analytics of social media posts,
specifically Twitter data. Based on the results and analysis, the following conclusions can be drawn:

• A balanced dataset of 205,271 posts (depressed and non-depressed) was created, providing a strong foundation
for NLP-based depression detection.

• Five preprocessing techniques (normalization, tokenization, stop-word removal, empty string removal, and
lemmatization), along with sentiment polarity scoring, improved feature quality and model performance.

• Six supervised algorithms (Logistic Regression, Naïve Bayes, SVM, Decision Tree, AdaBoost, and KNN) were
benchmarked. Logistic Regression outperformed the other models with an accuracy of 92%, followed by SVM
(90%) and Naïve Bayes (88%).

• Distance-based models such as KNN (70% accuracy) underperformed due to the high-dimensional and sparse
nature of text features, while linear and ensemble models proved more robust.

• The findings demonstrate the feasibility of scalable, text-based depression detection systems, supporting the use
of social media analytics for early mental health monitoring.
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