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Abstract

Predictive maintenance (PdM) in Industrial Internet of Things (IIoT) environments enables proactive fault
detection by analyzing real-time sensor data streams. This study presents a comparative evaluation of three
machine learning (ML) algorithms—Support Vector Machines (SVM), Decision Trees (DT), and Artificial Neural
Networks (ANN)—implemented within a unified IIoT predictive-maintenance framework. A synthetic multivariate
sensor dataset was generated using controlled fault injection, Gaussian noise modeling, and stratified sampling
across multiple operating regimes. Each model was trained and validated using five-fold cross-validation to ensure
statistical robustness. Model performance was assessed using accuracy, precision, recall, F1-score, and ROC-AUC,
along with operational key performance indicators (KPIs) related to downtime and maintenance-cost reduction.
A maintenance-policy simulator mapped prediction outputs to maintenance decisions and estimated cost savings
using Monte-Carlo evaluation. Experimental results show that ANN achieved the highest prediction accuracy
(94.8 £ 0.6%) and produced the greatest operational gains (50% downtime reduction and 32% maintenance-cost
reduction), outperforming SVM and DT. The proposed architecture incorporates edge preprocessing, cloud analytics,
and automated alerting, offering scalability for real-world industrial deployments. The findings demonstrate that
ML-driven PdM significantly improves asset reliability and reduces operational expenditure in IIoT systems. All
simulation scripts and synthetic data generators used in this study are available to support reproducibility and
benchmarking.

Keywords: Machine Learning, Predictive Maintenance, Industrial IoT, Sensor Data, Support Vector Machines, Neural
Networks

1. Introduction

The Industrial Internet of Things (IIoT) connects heterogeneous machines, sensors, and controllers through high-speed
networks to enable real-time visibility and data-driven decision-making across manufacturing ecosystems. Within this
context, predictive maintenance (PdM) seeks to anticipate equipment faults and schedule interventions before failures
occur, thereby reducing unplanned downtime and extending asset lifetime.

*Corresponding Author: Gaurav Kumar Saxena (gaurav.saxenal8@gmail.com)
Received: 26 Mar 2025; Revised: 15 Jun 2025; Accepted: 30 Aug 2025; Published: 31 Oct 2025
© 2025 Journal of Computers, Mechanical and Management.
This is an open access article and is licensed under a Creative Commons Attribution-Non Commercial 4.0 License.
DOI: 10.57159/jcmm.5.3.25210.


mailto:gaurav.saxena18@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.57159/jcmm.5.3.25210

Unlike traditional reactive or time-based maintenance, PdM relies on continuous condition monitoring and predictive
analytics to optimize maintenance planning and operational continuity. Machine learning (ML) plays a pivotal role in
PdM by learning degradation patterns and fault signatures from multivariate sensor data such as vibration, temperature,
and pressure. By leveraging supervised and unsupervised algorithms, ML enables anomaly detection, fault classification,
and remaining useful life (RUL) estimation [1-3]. However, practical deployment in IToT environments introduces
challenges such as non-stationary operating regimes, sensor noise, class imbalance, and latency constraints in edge—cloud
communication. In addition, reproducibility and transparency are often limited due to unavailable datasets, incomplete
algorithmic specifications, and insufficient performance evaluation.

Existing research has demonstrated the feasibility of ML-based PAM across domains ranging from manufacturing to
energy systems, yet gaps remain in comparative validation under unified experimental settings. Many prior studies
assess algorithmic performance on proprietary or narrowly scoped datasets without standardized metrics, hindering
cross-model comparison and benchmarking. Furthermore, operational key performance indicators (KPIs) such as
downtime and maintenance-cost reduction are rarely quantified using reproducible simulation frameworks. To address
these gaps, this work develops and evaluates a unified PdM framework for IIoT environments that integrates data
acquisition, feature extraction, ML-based prediction, and automated alerting. The framework is tested using synthetic
sensor datasets generated under controlled operating regimes, enabling reproducible experimentation and parameterized
fault modeling. Three representative ML algorithms—Support Vector Machines (SVM), Decision Trees (DT), and
Artificial Neural Networks (ANN)—are comparatively analyzed using accuracy, precision, recall, F1-score, ROC-AUC,
and operational KPIs derived from a maintenance-policy simulator. The main contributions of this study are as follows:

1. Development of a reproducible simulation-based PAM dataset generator that models sensor drift, noise, and fault
events across multiple operating regimes.

2. A comparative assessment of SVM, DT, and ANN under identical preprocessing, feature extraction, and validation
protocols, reporting statistical significance across five folds.

3. A unified ITIoT PdM architecture combining edge-level preprocessing, cloud analytics, and alert-driven maintenance
scheduling.

4. Quantitative evaluation of maintenance KPIs (downtime and cost reduction) through a Monte-Carlo-based
maintenance-policy simulator linking predictive outputs to actionable decisions.

By establishing a transparent and extensible benchmarking pipeline, this study aims to advance the reproducibility,
comparability, and industrial applicability of ML-driven predictive maintenance in IToT networks.

2. Related Work

Predictive maintenance (PdM) in Industrial Internet of Things (IIoT) environments has become a central research focus
as industries transition toward connected, autonomous, and data-driven operations. The combination of IoT-based
sensing and machine learning (ML) analytics enables early fault detection, anomaly diagnosis, and failure prediction.
This section reviews recent research on ML-based PAM approaches, categorized by methodological paradigms and
industrial application domains, and highlights benchmark datasets that support reproducible evaluation.

2.1. Shallow Machine Learning Methods

Early PdM studies relied on shallow ML algorithms such as Support Vector Machines (SVM), Decision Trees (DT),
and Random Forests (RF) for equipment fault classification. Jadhav et al. [1] applied SVM models to vibration data
from rotating machinery, achieving effective fault discrimination through statistical feature extraction. Rai et al. [2]
demonstrated real-time anomaly detection using IoT sensor data streams with Decision Tree classifiers for rule-based
interpretability. Similarly, Akyaz and Engin [3] developed a predictive maintenance pipeline for textile manufacturing
systems using supervised ML techniques to minimize downtime and optimize energy consumption. These approaches
remain computationally efficient for edge deployment but often exhibit limited generalization under non-stationary
conditions and imbalanced datasets.

2.2. Ensemble and Gradient-Boosting Approaches

To overcome the limitations of individual learners, ensemble techniques such as Random Forests, AdaBoost, and Gradient
Boosting Machines (GBMs) have been introduced. Koca et al. [4] employed ensemble classifiers to detect actuator
faults in packaging robots, demonstrating improved robustness against sensor noise. More recently, XGBoost and
Light GBM have emerged as strong baselines for industrial PAM due to their capacity to model nonlinear dependencies
while maintaining interpretability. Sharma et al. [5] provided a systematic review showing that ensemble learning
significantly outperforms single-model methods for large-scale sensor datasets, though at higher computational cost.



2.3. Deep Learning and Representation Learning

Deep architectures have advanced PAM by learning hierarchical representations directly from raw sensor signals. Akyaz
and Engin [3] and Buonocore et al. [6] reported that Artificial Neural Networks (ANNs) and Convolutional Neural
Networks (CNNs) outperform shallow models in complex fault classification tasks. Recurrent Neural Networks (RNNs),
including LSTM and GRU variants, are particularly effective for temporal degradation modeling and Remaining
Useful Life (RUL) estimation. Recent studies have also explored autoencoders and Transformer-based architectures for
unsupervised and self-supervised learning of degradation embeddings. However, deep models require large annotated
datasets, substantial computational resources, and careful calibration to avoid overfitting and overconfidence in
predictions.

2.4. Edge and Cloud-Based PdM Architectures

Integration of ML within IToT infrastructures has led to hybrid edge—cloud architectures that balance real-time inference
with scalable data management. Ringler et al. [7] proposed distributed learning at the edge to reduce communication
latency while maintaining predictive accuracy. Hafeez et al. [8] emphasized blockchain-enabled PAM architectures
for secure logging and auditability of maintenance events. Such frameworks illustrate the growing trend toward edge
intelligence and federated learning, though their latency—throughput trade-offs remain underexplored experimentally.

2.5. Benchmark Datasets and Simulation Studies

Standardized datasets are critical for reproducible PAM evaluation. Widely used benchmarks include NASA’s C-MAPSS
dataset for turbofan engine degradation, the PHMO08 Challenge dataset, and the IMS Bearing dataset for vibration
fault detection. These datasets have become reference points for testing classification accuracy, RUL prediction,
and robustness to noise and drift. Nevertheless, many industrial studies still depend on proprietary data, limiting
comparability across models and experiments. To address this limitation, simulation-based dataset generation has
been adopted in several works to emulate sensor drift, failure dynamics, and environmental variations under controlled
conditions. Such synthetic frameworks, including the one developed in this study, allow parameterized control of class
balance, noise, and operating regimes while supporting open reproducibility.

2.6. Summary of Research Gaps

The reviewed literature confirms that ML significantly enhances predictive maintenance by enabling early fault diagnosis
and adaptive maintenance scheduling. However, notable gaps remain: (i) inconsistent evaluation metrics hinder model
comparability; (ii) operational key performance indicators such as downtime and cost reduction are rarely quantified; (iii)
public datasets often lack domain diversity; and (iv) empirical validation of integrated IIoT architectures (edge, cloud,
blockchain) remains limited. This work addresses these issues through a unified simulation-based evaluation framework
that enables transparent, reproducible benchmarking of multiple ML algorithms and quantifies both predictive accuracy
and operational efficiency in IToT-based maintenance systems.

3. Materials and Methods

The proposed predictive maintenance (PdM) framework integrates synthetic data generation, feature engineering,
supervised learning, and operational evaluation to assess the performance of Support Vector Machines (SVM), Decision
Trees (DT), and Artificial Neural Networks (ANN) in Industrial Internet of Things (IIoT) environments. The entire
workflow was implemented in MATLAB/Simulink and Python (Scikit-learn, TensorFlow, and NumPy libraries) to ensure
reproducibility. All simulation scripts, parameters, and datasets have been made publicly available for independent
verification.

3.1. Synthetic Sensor Data Generation

To overcome the scarcity of open industrial datasets and ensure controlled experimentation, a synthetic multivariate
sensor dataset was generated to emulate equipment degradation in a rotating machinery system. Each simulated asset
produced three core signals—vibration, temperature, and pressure—sampled at 100 Hz over multiple operating regimes.
Fault injection followed a probabilistic model incorporating both gradual degradation and abrupt failure events:

e Normal regime: Gaussian noise (u = 0,0 = 0.01) added to baseline readings.
e Degradation regime: Linearly increasing mean shift and kurtosis over time to model wear.
e Fault regime: Step changes and spectral peaks injected to simulate bearing and imbalance faults.

A total of 10,000 labeled instances were generated with a class ratio of 3:1 (healthy:faulty). Each dataset was split
into five stratified folds to support cross-validation and confidence interval computation. Random seeds and generator
parameters were fixed to enable exact reproducibility.
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3.2. Feature Engineering

Raw sensor data were transformed into descriptive statistical and spectral features. Time-domain attributes included
mean, standard deviation, skewness, and kurtosis, while frequency-domain features were obtained using the Fast Fourier
Transform (FFT). Additional health indicators such as spectral entropy, energy, and peak frequency were computed
to enhance discriminative power. All features were normalized to zero mean and unit variance. Dimensionality
reduction was performed using Principal Component Analysis (PCA) retaining 95% cumulative variance to mitigate
multicollinearity and accelerate model convergence.

3.3. Learning Algorithms and Hyperparameter Tuning
Three supervised algorithms were implemented under identical preprocessing conditions:

e Support Vector Machine (SVM): Radial Basis Function (RBF) kernel; hyperparameters v € {0.001,0.01,0.1},
C € {1,10,100}; class weights inversely proportional to class frequency.

e Decision Tree (DT): Maximum depth € {5, 10, 15,20}; criterion = Gini impurity; minimum samples per leaf
€ {5,10,20}.

e Artificial Neural Network (ANN): Three fully connected layers (64-32-16 neurons), ReLU activation, dropout
rate 0.2, Adam optimizer with learning rate {1072,1073,10~}, batch size = 64, and early stopping (patience —
10 epochs).

Hyperparameters were optimized using grid search with five-fold cross-validation. Class imbalance was mitigated using
Synthetic Minority Oversampling Technique (SMOTE) and cost-sensitive loss weighting. All results are reported as
mean + standard deviation across folds.

3.4. Evaluation Metrics

Performance was measured using standard classification metrics—accuracy, precision, recall, F1-score, and area under
the receiver operating characteristic curve (ROC-AUC). For regression-based Remaining Useful Life (RUL) estimation,
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were computed. Confidence intervals (95%)
and paired t-tests were used to assess statistical significance between model results. Calibration curves and confusion
matrices were also plotted to analyze model reliability and error distribution.

3.5. Maintenance-Policy Simulator and KPI Mapping

To translate prediction performance into operational impact, a maintenance-policy simulator was developed. Predicted
fault probabilities were mapped to maintenance actions using a threshold-based policy:
s {Preventive Maintenance, p(fault) > 7, (1)

Operate, otherwise,

where 7 is the optimized alert threshold. Monte-Carlo simulations were executed over 10,000 cycles using stochastic
lead-time and failure distributions to compute downtime and cost metrics relative to a purely reactive maintenance
baseline. Downtime reduction (DR) and cost reduction (C'R) were expressed as:

Dreac ive — D

DR(%) = 100 x : PAM (2)
reactive
Cr active — C

CR(%) = 100 x —xeactive — 2PdM 5 © - PAM (3)

This simulation provides interpretable operational key performance indicators (KPIs) directly linked to model predictions.

3.6. System Architecture

The proposed architecture comprises three primary modules: (i) the IToT sensor network, (ii) the ML-based analytics
engine, and (iii) the maintenance and alert system. Sensor nodes continuously collect real-time operational data
and transmit them to edge gateways, which perform initial preprocessing before cloud upload. The ML engine
executes feature extraction, classification, or regression analysis to detect anomalies or predict Remaining Useful Life
(RUL). Finally, the alert subsystem triggers maintenance notifications and records activities on a blockchain ledger for
traceability and audit compliance [6, §].
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Figure 1: Proposed machine learning-based predictive maintenance architecture for IloT networks, integrating sensor
data acquisition, ML-based fault detection, and automated maintenance alerting.

3.7. Algorithmic Workflow

The end-to-end operational logic of the predictive maintenance pipeline is summarized in Algorithm 1. The algorithm
details how incoming sensor data are validated, preprocessed, analyzed by the trained ML model, and used to trigger
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maintenance alerts when a potential fault is predicted.

Algorithm 1 Machine Learning-Based Predictive Maintenance Algorithm

Require: Sensor data F', IoT configuration C'
Ensure: Prediction output P, Maintenance alert A

1: if ValidateFile(F) = TRUE then

2: F’ + Preprocess(F')

3: Features <+ ExtractFeatures(F")

4: else

5: return Error: Invalid Data Format
6: end if

7. if ValidateNetwork(C') = TRUE then
8: Model <— LoadPretrainedModel()
9: else

10: return Error: Invalid Network Configuration
11: end if

12: P < Model.predict(Features)

13: if P indicates failure then

14: A < GenerateAlert(P)

15: SendAlert(A)

16: else

17: LogHealthyStatus()

18: end ifreturn P

4. Results and Discussion

4.1. Experimental Setup

All experiments were conducted on a workstation equipped with an Intel i9 processor, 32 GB RAM, and NVIDIA RTX A4000
GPU running Ubuntu 22.04. The proposed predictive maintenance framework was implemented in Python 3.10 us-
ing scikit-learn and TensorFlow, with data streaming simulated via AWS IoT Core and Azure IoT Hub. Each
model—SVM, DT, and ANN—was trained and validated under identical preprocessing, feature extraction, and five-fold
cross-validation conditions. All results are reported as mean + standard deviation, and statistical significance was
assessed using paired t-tests (p < 0.05).

4.2. Predictive Performance Analysis

Table 1 summarizes the comparative performance of the three machine learning algorithms across multiple classification
metrics. ANN achieved the highest predictive accuracy (94.8 + 0.6%), followed by SVM (92.3 + 0.8%) and DT
(89.7 +1.2%). SVM exhibited strong precision but slightly lower recall under noisy and overlapping conditions, while
DT maintained interpretability but was more sensitive to class imbalance. ANN outperformed both baselines with
balanced precision-recall trade-offs and higher calibration reliability, indicating its robustness to nonlinear sensor
interactions.

Table 1: Comparative Performance of ML Algorithms for Predictive Maintenance (Mean £ SD over 5 folds)

Algorithm Accuracy (%) Precision Recall Fl-score ROC-AUC
SVM 92.3£0.8 0.925 0.910 0.917 0.954
DT 89.7+1.2 0.901 0.884 0.892 0.937
ANN 94.8 £0.6 0.950 0.944 0.947 0.972

While explicit ROC and precision—recall (PR) plots were not included here, ANN consistently demonstrated higher
ROC-AUC and PR-AUC values during validation, confirming its superior discriminative capability across varying
alert thresholds. These trends align with prior findings in [3, 6], where neural architectures achieved more stable fault
detection under noisy IToT data streams.

4.3. Remaining Useful Life (RUL) Estimation

For Remaining Useful Life (RUL) prediction, regression-based analysis revealed that ANN yielded the lowest Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE), as shown in Table 2. These results affirm ANN’s
ability to capture nonlinear degradation dynamics, making it well suited for continuous health assessment.
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Table 2: RUL Estimation Metrics (Mean + SD over 5 folds)

Algorithm MAE (hours) RMSE (hours)
SVM 7.4+0.6 9.2+0.8
DT 8.1+0.7 104 +1.1
ANN 59+0.5 7.3+0.6

4.4. Operational KPI Evaluation

The maintenance-policy simulator translated prediction probabilities into maintenance decisions using a threshold
policy (7 = 0.6). Monte-Carlo simulations across 10,000 operational cycles produced the downtime and cost reduction
metrics summarized in Table 3. ANN achieved the most substantial gains—approximately 50% reduction in unplanned
downtime and 32% reduction in maintenance costs—relative to the reactive baseline. SVM yielded moderate savings

with a slightly higher false-positive rate, while DT showed the lowest reductions due to misclassification of early-stage
faults.

Table 3: Operational Key Performance Indicators Derived from Monte-Carlo Simulation

Algorithm Downtime Reduction (%) Cost Reduction (%)
SVM 45.0+£1.5 30.0+1.3
DT 40.2+1.9 28.4+1.1
ANN 50.1+1.2 32.3+1.0

Figure 2 (original Figure 2) visualizes the comparative improvements across the evaluated algorithms, confirming
ANN’s superior predictive and operational performance.

Algorithm Performance: Accuracy, Downtime & Maintenance Cost Reduction

. Accuracy (%)
N Downtime Reduction (%)
EEm Maintenance Cost Reduction (%)

801

)]
o

Percentage (%)

40

20t

\5\| W - \01\ \P\\‘\N\
4ot we
oe

Algorithms

Figure 2: Comparative performance analysis of SVM, DT, and ANN algorithms for predictive maintenance in IIoT
environments. ANN achieves the highest accuracy and operational savings.

4.5. Discussion of Results

The comparative analysis reveals a trade-off between interpretability, computational complexity, and predictive accuracy.
DT offers high interpretability and low computational cost, making it suitable for low-power edge devices but limited in
modeling nonlinear dependencies. SVM performs well with balanced precision and recall but requires longer inference

times for large-scale IToT data. ANN, while more computationally intensive, provides superior accuracy, calibration
stability, and measurable operational gains.
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These findings corroborate earlier studies such as Akyaz and Engin [3] and Buonocore et al. [6], which highlighted the
suitability of neural architectures for nonlinear and high-dimensional fault data. The inclusion of statistical validation,
cross-fold averaging, and KPI-based simulation ensures reproducibility and strengthens the empirical validity of the
results.

4.6. Threats to Validity

Despite strong internal validity, certain limitations remain. First, the synthetic dataset, while parameterized and
reproducible, may not fully capture complex fault interactions in real industrial settings. Second, the cost and downtime
model in the maintenance simulator employs simplified assumptions; future research should incorporate empirically
derived cost structures from industrial partners. Finally, model generalization under diverse hardware and network
conditions should be further validated through real-world IToT testbeds.

Overall, the results confirm that machine learning—when implemented through a transparent and reproducible
pipeline—can yield statistically robust and operationally meaningful improvements to predictive maintenance in IIoT
environments.

5. Conclusions

This study presented a reproducible framework for predictive maintenance (PdM) in Industrial Internet of Things
(IToT) networks using machine learning (ML) algorithms. Three representative models—Support Vector Machines
(SVM), Decision Trees (DT), and Artificial Neural Networks (ANN)—were evaluated under identical preprocessing,
feature extraction, and validation conditions using a synthetic, parameterized sensor dataset. Experimental analysis
demonstrated that ANN achieved the highest predictive accuracy (94.8 + 0.6%) and delivered the greatest operational
benefits, including approximately 50% downtime and 32% maintenance-cost reduction relative to reactive maintenance.
The improved performance of ANN is attributed to its capacity to model nonlinear fault dynamics and adapt to
multivariate sensor correlations. In contrast, SVM and DT provided interpretable yet comparatively less accurate
results, highlighting the performance—complexity trade-offs relevant for practical deployment. Beyond predictive
accuracy, the proposed framework contributes a transparent and reproducible evaluation pipeline that links model
predictions to operational key performance indicators through a Monte-Carlo maintenance-policy simulator. This
approach enhances interpretability, facilitates benchmarking, and supports decision-making in industrial settings where
cost and reliability are equally critical. Future work will extend this framework to include ensemble and hybrid deep
learning models such as CNN-LSTM architectures, domain adaptation techniques for cross-equipment generalization,
and real-world validation using open PAM benchmarks (e.g., NASA C-MAPSS, PHMO0R). Integration of edge—cloud
orchestration and federated learning will also be explored to improve scalability, latency performance, and data privacy
in IToT deployments.

Data and Code Availability

All synthetic datasets, data generators, and implementation scripts used in this study are available in an open-access
repository (link to be provided upon publication) to ensure transparency and reproducibility.
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