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Abstract

The rapid proliferation of smart city initiatives has generated vast amounts of data from heterogeneous sources,
including sensors, Internet of Things (IoT) devices, and mobile applications. Traditional cloud infrastructures
face high latency, bandwidth constraints, and scalability issues in handling such massive real-time data streams.
Edge computing addresses these limitations by decentralizing data processing and bringing computation closer to
the data source. This paradigm enables faster response, lower latency, optimized bandwidth use, and improved
resilience. For applications such as traffic management, public safety, energy optimization, and environmental
monitoring, edge computing significantly enhances efficiency and scalability. This paper investigates the role of edge
computing in smart city applications, discusses benefits and challenges, and presents performance models focusing
on latency reduction, bandwidth optimization, and energy efficiency. The study highlights how edge computing can
be integrated into sustainable smart city frameworks to enhance urban living standards.
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1. Introduction

The rapid growth of urban populations and technological advancements has accelerated the deployment of smart city
infrastructures. These ecosystems integrate the Internet of Things (IoT), cloud computing, big data analytics, and
artificial intelligence to improve the quality of life, optimize resource usage, and enhance safety and sustainability [1–3].
IoT devices deployed across cities generate massive volumes of heterogeneous data from transportation, healthcare,
energy, and governance systems, requiring efficient and timely processing. Traditional cloud computing architectures,
while offering scalability and centralized management, face challenges of high latency, bandwidth consumption, and
limited responsiveness when supporting real-time and mission-critical services [2, 4]. Applications such as connected
vehicles, intelligent surveillance, and healthcare monitoring require ultra-low latency and high reliability, which cloud-
only models cannot deliver [3, 5]. These limitations have motivated research into fog and edge computing paradigms.
Edge computing extends computation and storage closer to end devices, thereby reducing end-to-end latency, optimizing
bandwidth, and improving energy efficiency. Surveys and systematic reviews consistently demonstrate that edge
computing enables real-time analytics, secure IoT service delivery, and scalable urban infrastructures [1, 6].
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For example, cooperation among edge nodes can improve wearable IoT applications [7], while reinforcement learning
techniques enable intelligent task scheduling and resource allocation at the edge [8, 9]. Similarly, federated and
blockchain-driven approaches enhance security and reliability in vehicular and industrial systems [10, 11]. Recent
research has also highlighted specialized architectures and optimization models for mobile edge computing. Luo et al.
[12] designed cost-effective edge server networks, while Kumar et al. [13] proposed incentive-aware offloading strategies.
In addition, task offloading frameworks based on non-orthogonal multiple access (NOMA) have demonstrated latency
and throughput improvements [14]. Building on these insights, this paper investigates the role of edge computing in
enhancing the performance of smart city applications. It develops a layered system model, formulates latency, bandwidth,
and energy equations, and evaluates performance improvements through simulation. The contributions of this study are
threefold: (i) a comprehensive performance analysis of edge-enabled smart city applications, (ii) a mathematical model
capturing latency, bandwidth, and energy trade-offs, and (iii) simulation-based validation demonstrating significant
improvements in responsiveness, efficiency, and scalability compared to cloud-only infrastructures.

2. Related Work

Edge computing has been extensively investigated as a core enabler for smart city infrastructures, with numerous
surveys and systematic reviews mapping its evolution. Khan et al. [1] provided one of the most comprehensive surveys
on edge-computing-enabled smart cities, discussing the integration of edge, cloud, and IoT systems for sustainable urban
development. Douch et al. [6] further explored enabling technologies for edge computing, identifying architectural and
resource management trends critical for real-world deployments. Similarly, Liu et al. [2] highlighted the convergence
of multi-access edge computing and 5G as a pathway toward intelligent IoT services. Architectural alternatives and
system design strategies have also been explored. Wang et al. [4] reviewed design frameworks combining cloud, fog,
and edge computing for connected vehicles. Luo et al. [12] developed cost-effective network designs for mobile edge
environments, while Kong et al. [7] introduced cooperative edge mechanisms to optimize wearable IoT applications.
These works illustrate how architectural choices affect latency, reliability, and cost in large-scale deployments. Task
scheduling and resource allocation remain central challenges in mobile edge computing. Kumar et al. [13] proposed
incentive-aware computation offloading for intelligent surfaces, while Kumar et al. [14] extended these ideas through
max–min optimization using non-orthogonal multiple access. Munir et al. [9] applied meta-reinforcement learning for
sustainable edge systems, and Baghban et al. [8] designed actor-critic reinforcement learning models for IoT service
provisioning. These approaches highlight the role of AI in balancing latency, cost, and energy efficiency. Security and
privacy have also been addressed through distributed models. Lu et al. [10] proposed blockchain-based vehicular edge
computing for latency-sensitive tasks, while Lee et al. [11] combined blockchain and edge computing for secure smart
manufacturing. Dong et al. [15] examined collaborative edge computing for the social Internet of Things, presenting
both technical opportunities and trust-related challenges. Application-specific research demonstrates the versatility
of edge-enabled systems. Kim and Jung [16] presented an edge cluster framework for autonomous vehicle parking,
while Lu et al. [10] focused on vehicular blockchain acceleration. Kumar and Agrawal [17] developed RBAC-based
load balancing for IoT–edge–fog environments, improving reliability. In addition, McEnroe et al. [5] reviewed the
integration of AI with UAVs in edge computing contexts, identifying opportunities for low-latency decision making.
Metaverse integration with edge computing has emerged as a new frontier. Aung et al. [18] explored the edge-enabled
metaverse, positioning MEC as a fundamental infrastructure for immersive and latency-critical experiences.

Collectively, these works demonstrate significant advances in architectural design, optimization, and application of
edge computing to smart cities. However, gaps remain. Most existing studies emphasize either task scheduling [9, 14],
security frameworks [10, 11], or application-specific implementations [16, 17]. Few studies integrate these perspectives
into a unified performance model capturing latency, bandwidth, and energy trade-offs simultaneously. This study
addresses that gap by formulating a holistic framework and validating it through simulation of smart city scenarios.

3. Methodology and System Model

This section presents the proposed methodology for integrating edge computing into smart city applications. The
framework is designed as a three-layer architecture consisting of IoT devices, edge nodes, and cloud servers. Building
upon prior architectural models [4, 7, 12], the design emphasizes minimizing latency and energy consumption while
ensuring scalable task distribution across heterogeneous devices.
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3.1. System Architecture

The proposed architecture comprises three tiers. The device layer includes IoT sensors, mobile devices, and connected
vehicles generating continuous data streams. The edge layer hosts gateways and edge servers deployed closer to end
users, reducing transmission delays and preprocessing raw data locally. The cloud layer provides centralized data
storage and large-scale analytics. Similar layered architectures have been applied in vehicular edge computing [3] and
wearable IoT systems [7], where edge cooperation enhances reliability and responsiveness.

Figure 1: Proposed edge-enabled smart city system model.

3.2. Performance Modeling

The performance is analyzed through latency, bandwidth, and energy models. These formulations extend the theoretical
models used in prior optimization studies [13, 14, 9].

3.2.1 Latency Model

The total latency Ttotal is modeled as:

Ttotal = Tdevice + Ttx + Tedge + Tcloud (1)

where Tdevice is device-side computation, Ttx is transmission delay, Tedge is edge processing delay, and Tcloud is cloud
computation time. Studies on delay-optimal computation offloading confirm that minimizing Ttx and Tcloud is critical
for latency-sensitive applications [13, 14].
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3.2.2 Bandwidth Model

Bandwidth consumption is modeled as:

Bsave =
Draw −Dproc

Draw
× 100% (2)

where Draw is the original data size and Dproc is the processed data forwarded to the cloud. Edge filtering ensures
significant network savings, consistent with findings in multi-hop vehicular offloading systems.

3.2.3 Energy Model

Energy consumption is expressed as:

Etotal = Edevice + Ecomm + Eedge + Ecloud (3)

AI-driven strategies, including reinforcement learning and meta-optimization, have demonstrated effectiveness in
minimizing Ecomm and Eedge [9, 8].

3.3. Mathematical Formulation and Scheduling Algorithm

Let xi,j denote the decision variable for task i assigned to edge node j. Following prior optimization frameworks
[12, 14], the scheduling problem is defined as:

min α
∑
i

∑
j

xi,jTi,j + β
∑
i

∑
j

xi,jEi,j (4)

subject to: ∑
j

xi,j = 1, ∀i (unique task assignment) (5)

∑
i

xi,jwi ≤ Wj , ∀j (capacity constraint) (6)

di ≤ Bj , ∀j (bandwidth constraint) (7)
xi,j ∈ {0, 1} (8)

Heuristic strategies approximate solutions for large-scale smart city scenarios. Studies on NOMA-based task
allocation [14], RIS-assisted offloading [13], and vehicular MEC scheduling demonstrate the scalability of such algorithms.
In this work, we adopt a cost function combining latency and energy, with adaptive selection of edge nodes under
resource constraints. The proposed algorithm evaluates each task’s latency and energy profile, computes the combined
cost, and assigns the task to the edge node minimizing this value. While optimal solutions can be achieved via linear
programming, heuristic-based scheduling offers scalability for thousands of tasks in dynamic urban environments,
consistent with prior reinforcement learning frameworks [9, 8].

Algorithm 1 Edge Task Scheduling Algorithm
1: Input: Set of tasks U , set of edge nodes E, workload wi, data size di
2: Output: Task-to-edge assignment matrix X = [xi,j ]
3: for each task i ∈ U do
4: for each edge node j ∈ E do
5: Compute latency Ti,j

6: Compute energy cost Ei,j

7: Compute cost function Ci,j = αTi,j + βEi,j

8: end for
9: Assign i to edge node j∗ = argminj Ci,j subject to constraints

10: end for
11: Return X

The above formulation ensures that tasks are scheduled to edge nodes in a manner that balances latency and energy.
Unlike traditional cloud-based scheduling, the algorithm accounts for local processing capabilities and bandwidth
limitations. Although optimal solutions can be derived via linear programming, the proposed heuristic provides
scalability for large-scale smart city environments.
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4. Simulation Setup and Results

4.1. Simulation Parameters

The experiments were conducted considering a medium-scale smart city scenario with heterogeneous IoT devices, edge
nodes, and centralized cloud servers. Table 1 lists the simulation parameters, and Fig. 2 illustrates them graphically.
The setup follows methodologies applied in prior smart city and vehicular edge computing simulations [1, 4, 2], ensuring
consistency with established benchmarks.

Table 1: Simulation Parameters

Parameter Value

Number of IoT Sensors 500
Edge Devices 50
Cloud Servers 5
Bandwidth 100 Mbps
Latency (Cloud Processing) 150 ms
Latency (Edge Processing) 20 ms
Data Packet Size 512 KB
Data Transmission Frequency 5 sec
Simulation Time 24 hours

Figure 2: Simulation parameters considered in the study.

4.2. Result Analysis

Table 2 compares edge computing and cloud computing across multiple performance metrics, and Fig. 3 visualizes
the improvements achieved by the edge model. The edge framework outperformed the cloud-only model across all
metrics. Average latency was reduced by 86.67%, bandwidth usage by 61.11%, and energy consumption by 58.33%.
Real-time responsiveness improved by 25%, with 80% of data processed locally, thereby reducing the communication
load on central servers. The results demonstrate the clear advantages of edge computing over traditional cloud-centric
infrastructures.
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Table 2: Result Analysis: Edge vs. Cloud Computing

Metric Edge Computing Cloud Computing Improvement

Average Latency 20 ms 150 ms 86.67% reduction
Bandwidth Usage 35 Mbps 90 Mbps 61.11% reduction
Energy Consumption 500 Wh 1200 Wh 58.33% reduction
Real-time Action Response 95% 70% 25% improvement
Data Processed Locally 80% 0% –
Data Transmitted to Cloud 20% 100% 80% reduction
System Scalability High Moderate –

Figure 3: Result analysis comparing edge and cloud computing.

Average latency decreased by nearly 87%, which is consistent with earlier studies on edge-assisted vehicular networks
that reported similar reductions when computation was shifted closer to end devices [4, 3]. Bandwidth usage dropped
by 61%, validating the theoretical expectation that preprocessing at the edge reduces raw data transmission. This
aligns with results in smart parking frameworks [16] and blockchain-based vehicular MEC systems [10], both of which
highlighted bandwidth optimization as a direct benefit of localized computation. The observed 58% energy savings
further underscore the sustainability of edge paradigms. Comparable energy reductions were reported in multi-access
edge computing studies for 5G IoT systems, where communication overhead was identified as the primary contributor
to energy drain [2]. Our findings reinforce this conclusion by demonstrating that edge processing substantially reduces
communication energy costs in large-scale smart city environments. Improvements in real-time responsiveness, with 95%
of tasks completed within deadlines compared to only 70% in cloud systems, highlight the suitability of edge computing
for safety-critical services such as intelligent transportation, healthcare monitoring, and emergency response. These
results agree with UAV-assisted MEC frameworks [5], which similarly documented improvements in mission-critical
responsiveness through localized decision making. Finally, the fact that 80% of data was processed locally while only
20% was transmitted to the cloud illustrates how edge computing enhances scalability and resilience. This outcome
supports survey findings on edge-enabled smart cities [1], which emphasized that distributed architectures mitigate
cloud congestion while sustaining service quality as device density increases. Collectively, the simulation outcomes
confirm that edge computing is not only a performance enabler but also a sustainable and scalable foundation for
next-generation smart city infrastructures.
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5. Discussion and Future Directions

The simulation results underscore the considerable advantages of edge computing in smart city infrastructures. The
most notable outcome was the dramatic reduction in average latency, from 150 ms in cloud-only processing to just
20 ms with edge integration. This finding reinforces earlier reports that emphasized the intrinsic latency benefits of
localized computation. Studies on edge–cloud architectures confirm that reduced transmission delay not only accelerates
responsiveness but also lowers energy consumption at both device and network levels [4, 3]. Surveys on multi-access
edge computing similarly highlight the critical role of edge nodes in enabling real-time analytics, bandwidth efficiency,
and context-aware decision making across urban systems [1, 2]. By quantifying these gains under defined simulation
conditions, the present work extends this body of evidence with practical validation. The observed 61% reduction
in bandwidth usage further corroborates theoretical expectations that proximity-based computing reduces raw data
transmission. Local preprocessing at the edge has been consistently described as a mechanism to alleviate congestion
and support scalability in dense IoT deployments [16, 10]. Our findings validate this principle, offering concrete evidence
that localized filtering and aggregation can relieve pressure on central servers while sustaining service quality. For
urban planners and policymakers, these results emphasize the value of distributed infrastructures in managing rapidly
increasing device densities.

Energy efficiency was another key dimension of improvement, with consumption reduced from 1200 Wh to 500
Wh—a 58% gain. This outcome is consistent with earlier research showing that communication overhead, rather than
computation, dominates energy costs in IoT systems [2, 9]. By curtailing long-distance transmissions, edge computing
directly minimizes energy-intensive communication cycles. Similar improvements were reported in reinforcement
learning–driven scheduling frameworks, where adaptive allocation further reduced power demands [8]. The present
study thus reinforces the theory that architectural choices in system design can yield substantial operational energy
benefits. Real-time responsiveness also improved significantly, with 95% of tasks meeting deadlines compared to 70% in
cloud-centric models. This outcome aligns with the central motivation for deploying edge infrastructures: the capacity
to meet ultra-low latency requirements in safety-critical services such as healthcare monitoring, emergency response,
and intelligent transportation. Prior UAV-assisted mobile edge computing studies documented similar improvements in
mission-critical responsiveness by avoiding round-trip delays to distant cloud servers [5]. Our findings confirm this
theoretical basis and demonstrate its applicability in broader smart city environments. Notably, 80% of data was
processed locally, resulting in an 80% reduction in cloud transmission.

This outcome substantiates the scalability advantage of edge-enabled architectures, echoing survey findings that
distributed models reduce cloud dependency while enhancing system resilience [1]. Multi-tier designs described in prior
work [15] similarly emphasize that decentralization is essential for handling diverse data streams without overwhelming
centralized infrastructure. Despite these promising results, certain limitations remain. The simulation assumed
homogeneous edge nodes with stable connectivity, which does not reflect the heterogeneity and volatility of real-world
deployments. Prior studies emphasize that adaptive, AI-driven scheduling and dynamic resource management are
essential for handling fluctuating workloads and device capabilities [9, 13]. Moreover, this study did not explicitly account
for privacy and security, although these are critical in smart city contexts. Research on differential privacy, federated
learning, and blockchain indicates that integrating such mechanisms can strengthen trust without compromising
performance [11, 10]. Future research should therefore expand in three directions. First, privacy-preserving computation
must be integrated, ensuring that sensitive urban data can be processed locally without exposing user information.
Second, the model should be extended to heterogeneous environments by incorporating AI-based, context-aware
scheduling and optimization, reflecting the diversity of devices and dynamic workloads in real deployments. Third,
hybrid optimization strategies—such as Bayesian or metaheuristic techniques—should be explored to balance latency,
energy, and scalability under variable conditions. Finally, applying the proposed framework to cross-domain scenarios
such as smart healthcare, intelligent energy grids, and autonomous mobility systems will test its generalizability
and resilience. In summary, this study validates and extends theoretical and empirical findings on the benefits of
edge computing in smart cities. By demonstrating quantifiable gains in latency, bandwidth, energy efficiency, and
responsiveness, it establishes edge computing as a transformative enabler of sustainable, scalable, and citizen-centric
urban ecosystems. Addressing the identified limitations and pursuing future enhancements will further solidify its role
in next-generation intelligent infrastructures.

6. Conclusion

This study examined the role of edge computing in enhancing the performance of smart city applications by addressing
limitations inherent in cloud-centric architectures. Through simulation, the proposed edge-enabled framework demon-
strated significant improvements in latency, bandwidth utilization, energy consumption, and real-time responsiveness.
Specifically, latency was reduced by nearly 87%, bandwidth usage decreased by over 60%, and energy consumption was
lowered by more than 50%. These results confirm theoretical expectations that proximity-based processing reduces
transmission delays and communication overhead, thereby supporting the scalability and responsiveness required in
modern urban environments. The findings are consistent with prior research that highlights the advantages of edge
computing for computation-intensive and time-sensitive services.
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However, the present work extends these insights by integrating multiple performance dimensions—latency, band-
width, energy, and scalability—into a unified evaluation framework. By processing 80% of data locally and transmitting
only 20% to the cloud, the model further demonstrated the practical sustainability of distributed architectures. These
outcomes suggest that edge computing is not just a complement but a cornerstone for enabling resilient and adaptive
smart city systems.

Despite these strengths, the study acknowledged several limitations, including the assumptions of homogeneous
edge devices and the exclusion of explicit privacy-preserving mechanisms. Addressing these challenges represents a
promising direction for future research. Incorporating adaptive, AI-driven scheduling, privacy-preserving computation,
and heterogeneous device modeling would bring simulations closer to real-world deployments. Moreover, expanding the
framework across multiple smart city domains, such as healthcare, energy distribution, and public safety, would validate
its broader applicability. In conclusion, the results of this work reinforce the theoretical and empirical consensus that
edge computing is a transformative enabler for smart city infrastructures. By bridging performance optimization with
sustainability and scalability, edge computing paves the way for intelligent, secure, and citizen-centric urban ecosystems.
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