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Abstract

Regression testing plays a major role in software maintenance. The occurrence of any new fault during the retesting or modifi-
cation process needs to be analyzed effectively. Regression testing needs enormous effort to produce a higher fault detection rate.
Test case prioritization is an efficient way to predict the fault detection rate. Under the constraints of project deliveries, it is too
costly to run a large number of test cases frequently. Test case prioritization is needed to rank the test cases. The prioritization must
be done to detect the maximum number of faults in the available time. Though many test case prioritization techniques have been
proposed, they have not considered the risk of skipping the test cases. The present work proposes a method to solve the test case
prioritization or test case subset selection as a multi-criteria optimization problem. A metaheuristics algorithm is proposed in this
work combining particle swarm optimization (PSO) with the bat algorithm (BA) is proposed to solve the problem of finding the best
subset of regression test cases with multi-objectives of reducing risk in skipping test cases, maximizing the number of faults within
the constraints of time. The proposed approach provided a significant increase in Average Percentage of Faults Detected (APFD) and
coverage while ensuring lower execution time and resource cost compared to existing works.

Keywords: Software Testing; Regression Testing; Test Case Prioritization; Particle Swarm Optimization; Bat Algorithm

1 Introduction

Software engineering is not just programming and software development but the implementation of engineering procedures for the
development of any software systematically. Regression testing is usually a time-consuming and expensive activity. It is typically
performed before releasing the product to the customer to ensure that any changes in the code base, such as bug fixing, new
requirements, or code restructuring, do not introduce side effects [1]. As software evolves, regression testing needs to be done
frequently. Running the entire regression test suite is complex in terms of time and resources, often accounting for 80

Many different techniques have been proposed to address this problem, which can be grouped into four major categories: test
case selection, test case reduction, test case prioritization, and test suite augmentation. Methods under the category of test case
selection aim to select a subset of test cases that cover the modified or newly added code [3]. Methods in the category of test
case reduction attempt to remove redundant or irrelevant test cases from the test suite [4]. Methods in the category of test case
prioritization reschedule the execution order of test cases based on certain goals. Methods in the category of test suite augmentation
generate new test cases to cover newly added or modified code elements.

Test case managers use any of these methods alone or in combination, but test case prioritization is the most widely adopted
method. Test case prioritization aims to find a subset of test cases and their scheduling order in a way that speeds up fault detection.
Test case subset selection for prioritization can be based on multiple cues such as structural coverage, fault historical data, error
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probability, and similarity between test cases and severity. Most test case prioritization schemes aim to maximize coverage to
identify more faults with less effort. However, they often neglect other optimization criteria such as resources and deadline times.
Several researchers have conducted various works in this selected area of research.

For example, Rothermel et al. [5] analyzed several techniques to prioritize test cases based on total coverage of code components,
code components not earlier covered, and the ability to reveal faults in code components. The authors measured the fault detection
rate among these three techniques and compared them to randomly and optimally ordered test suites. Harrold and Orso [6] analyzed
the problems in the selection and prioritization of test cases and identified the issues in prioritization. They provided guidelines for
designing test case prioritization.

Tonella et al. [7] applied a machine learning (ML) algorithm called case-based ranking to prioritize test cases. They collected
and evaluated user inputs across multiple cases using multiple prioritized indexes to iteratively order the test cases. User input
played a key role in prioritizing the test cases in this work. Jiang et al. [8] proposed an adaptive random testing strategy based on
maximizing coverage and increasing the likelihood of detecting faults. This method demonstrated lower execution time compared to
other coverage-based schemes. Zhang et al. [9] proposed a test case prioritization technique based on the unified modeling language
(UML) design model coverage, deviating from existing works on code coverage. They estimated error probability and severity for
the classes and prioritized test cases based on the selected metrics. However, this method only considered dependencies at a near
level and did not consider far-off dependencies.

Li et al. [10] evaluated the effectiveness of greedy, evolutionary, and metaheuristic algorithms for test case prioritization. The
effectiveness of the algorithms was measured in terms of code coverage metrics, without considering other critical parameters such
as fault detection probability and resource cost. Zhang et al. [11] proposed adaptive random test case prioritization techniques
based on maximizing code coverage. The proposed techniques were effective compared to random testing. However, the approach
considered code coverage as the only parameter in evaluating the effectiveness of random test case prioritization techniques. Zhang
et al. [12] proposed an adaptive random sequence-based black box test case prioritization technique. This technique evaluated
group test cases against category partition-based distance measures and performed well compared to random prioritization. The
prioritization aimed to maximize coverage.

Eghbali et al. [13] improved the performance of coverage-based prioritization techniques using the lexicographic ordering
strategy. They proposed a new heuristic to break ties in the selection of test cases, which improved coverage but did not consider
other parameters such as fault detection probability and resource cost minimization. Chen et al. [14] used a genetic algorithm to
reorder the test case prioritization technique to increase the number of faults detected. The method considered block-level coverage
instead of method-level coverage. They experimented with 0/1 knapsack solvers for test suite reordering to maximize coverage.
The algorithms were evaluated in terms of space/time costs and test case coverage, but they demonstrated lower fault detection
probability.

Zhang [15] proposed a time-aware test case prioritization technique applying integer linear programming. The technique aimed
to maximize coverage, but the fault detection probability was still lower due to function-level coverage. Chen et al. [14] proposed
an adaptive random sequence-based prioritization based on clustering. They clustered the test cases based on several objectives and
methods invocation sequence using K-means and K-medoids clustering algorithms. By clustering, the test suite was formed with
diverse test cases, designed to maximize coverage. Wang et al. [16] proposed a test case prioritization technique based on a fixed-
size candidate set adaptive random testing algorithm to increase fault detection probabilities. They proposed a greedy prioritization
technique with reduced randomness and increased fault detection effectiveness.

Debroy et al. [17] estimated test case size based on failure rate and constructed a predictive model with the failure rate of
different parts of the code and the number of test cases needed to test it. However, the suitability of this model for large-size
software is untested. Palma et al. [18] used a logistic regression model to predict the priority of test cases. They found a correlation
between the coverage of methods and the priority of test cases. However, resource cost was not considered a factor in test case
prioritization.

Overall, various test case prioritization techniques have been proposed to improve regression testing efficiency and effective-
ness. However, there is still room for improvement in considering multiple optimization criteria such as fault detection probability,
resource cost, and deadline times in the prioritization process.

From the survey summary (Table ??), most test case prioritization techniques are observed to be focused only on maximizing
the coverage in terms of code function and block level. As a result, test case fault prediction probability would be relatively lower.
In addition, most approaches considered few parameters like coverage and failure detection and did not consider parameters like
deadline and resource cost. Thus, the present work attempts to solve this problem and fill the research gap.

The present work views test case prioritization as a multi-criteria optimization problem and proposes a metaheuristics solution
based on combining particle swarm optimization with the bat algorithm. Metaheuristics are approximation methods that tackle dif-
ficult optimization problems by proffering good solutions within practical computational time in place of a guaranteed best solution
[19]. The majority of metaheuristics are based on biological evolution principles. In particular, they are concerned with simulating
various biological metaphors that differ in the nature of the representation schemes [20]. There are three main paradigms: evolu-
tionary, swarm, and immune systems. Evolutionary algorithms (EAs) simulate the biological progression of evolution at the cellular
level employing selection, crossover, mutation, and reproduction operators to generate increasingly better candidate solutions (chro-
mosomes). For evolutionary computation, there are four historical paradigms: evolutionary programming, evolutionary strategies,
genetic algorithms, and genetic programming [21]. Swarm intelligence (SI) mimics the collective behavior of agents in a commu-
nity, such as birds and insects. SI mainly depends on the decentralization principle, i.e., the candidate solutions are updated through
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local interaction with each other and their environment [22]. The most popular SI algorithms are particle swarm optimization (PSO)
and ant colony optimization (ACO) [23]. PSO is a more referred metaheuristics algorithm due to its simplicity and flexibility. In
many works, it is observed that Metaheuristics algorithms get into local minima problems. Metaheuristics combining two different
optimization algorithms are used to solve the local minima problem in a single optimization algorithm. The initial solution to the
problem is found using PSO, and this initial solution is further refined by the bat algorithm to provide the final solution. The test
case subset is selected based on multiple criteria of coverage, minimizing redundant and irrelevant test cases, reducing the time
difference between test execution time and deadline, and maximizing the fault prediction probability.

The novel contributions of this work are:

1. Modeling the test case prioritization as a multi-criteria optimization problem and proposing a metaheuristics solution to the
optimization problem, and

2. Providing a novel object-oriented coverage analysis with a higher probability of fault detection.

Table 1: Previous similar studies

Author Review

Rothermel et al. [5] Considered only rate of fault detection as the parameter for test case prioritization
Tonella et al. [7] User guide ranking based on coverage information. Prioritization based only on coverage
Jiang et al. [8] Considered maximizing coverage and increasing fault detection ability
Zhang et al. [9] Based only on code coverage maximization
Li et al. [10] Considered maximizing code coverage as the only test case prioritization criteria
Zhang et al. [11] Adaptive random testing to maximize the coverage
Zhang et al. [12] Grouping test cases based on coverage and selecting test cases to maximize the coverage
Eghbali et al. [13] Considered maximizing code coverage as the only test case prioritization criteria
Chen et al. [14] Applied clustering to select test cases to maximize the coverage
Wang et al. [16] Applied adaptive random testing to maximize fault detection probability
Debroy et al. [17] Considered only coverage and fault detection probability in test case selection
Palma et al. [18] Considered only fault detection probability in test case selection

2 Method

This study employs a metaheuristic test case prioritizing strategy. The proposed metaheuristic test case prioritization views the
problem of test case subset selection as a multi-criteria optimization problem. The test cases must be selected from the regression
test suite in such a way as to maximally cover the impact due to code changes, maximize the fault detection probability, minimize
the deviation to a deadline, and minimize the deviation to the budget allocated.

Let us assume that the regression test suite R has n test cases {t1, t2, t3, . . . , tn}, and the objective of the proposed solution is
to select any m test cases such that the code change impact (CCI) is covered maximally by the m test cases. The fault detection
probability (FP) must be higher with the subset of m test cases. The timeline to execute m test cases must be less than the deadline
d. Mathematically, the said condition is represented by Eq. [1], where E represents the test case execution time:

m∑
i=1

E(ti) < d (1)

Moreover, the total cost of executing m test cases must be less than or equal to the test budget B. Mathematically, the condition is
represented by Eq. [2], where C is the resource cost of execution of the test case:

m∑
i=1

C(ti) ≤ B (2)

CCI is measured in terms of impact within the class (CCIw) and across class (CCIa) and determined using Eq. [3]. The impact
within the class is determined by Eq. [4], where bi is the number of lines that are impacted in each of the functions, which are called
by the function where code changes are made:

CCI = CCIw + CCIa (3)

CCIw = α

∞∑
i=0

βibi (4)

The value for α and β is set as 1 and 0.90, respectively, as per the observations made in [14]. CCIa is calculated similarly for all
the classes related to the class where the change is made. FP is measured as the cyclomatic complexity of the code section where
the changes are made. A control flow graph is constructed based on the code, as depicted in Figure 1.
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Figure 1: Control flow graph representing the code section

From the control flow, FP is calculated using Eq. [5], where E is the number of edges in the control flow, N is the number of
nodes in the control flow, and P is the number of connected components. The time for execution of the test case and the resource
cost for the execution of the test case is found based on the historical average of observations over past runs. For each of the n
test cases, the values of (CCI, FP, E(ti), C(ti)) are calculated. After calculation, the best subset of m test cases is found using
metaheuristics combining PSO and BA. The metaheuristic approach adopted in this work to solve the local minima problem is using
a single optimization algorithm.

FP = E −N + 2P (5)

PSO is a swarm intelligence algorithm simulating the social behavior of a swarm of organisms. This method is popular for
solving optimization problems due to its simplicity, flexibility, and versatility. It is believed that organisms tend to move randomly
with different velocities and use them to update their position. Each candidate solution is termed a particle. Each particle tries to
attain its best velocity based on its local best (pbest) value and its neighbor’s global best (gbest). Each particle’s next position depends
on the current position, current velocity, distance from the current position to pbest, and distance from the current position to gbest.
The movement of the particle in its search space depends on its velocity. For a particle X , its current position Xi(t+ 1) and current
velocity Vi(t+ 1) are updated as shown by Eq. [6] and Eq. [7], respectively:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (6)

Vi(t+ 1) = wVi(t) + c1r1(p
i
best(t)−Xi(t)) + c2r2(g

i
best(t)−Xi(t)) (7)

In Eq. 6 and Eq. 7, t is the iterative value, c1 and c2 are acceleration coefficients, r1 and r2 are random numbers, and w is the
inertia weight. The iteration is repeated until the termination condition is met. BA is a bio-inspired search optimization algorithm
based on the bio-sonar characteristics of bats. Bats use a type of sonar called echolocation to detect prey. They fly from a position
Xi with a random velocity Vi with frequency f and loudness A0 in search of prey. They adjust the wavelength of their emitted
pulses and pulse emission rate depending on their proximity to their prey. A bat’s location, velocity, and pulse frequency are updated
over successive iterations t. Mathematically, all three discussed parameters can be determined using Eq. 8, Eq. [9], and Eq. [10]:

fi = fmin + (fmax − fmin)β (8)

FV t
i = FV t−1

i + (FXt−1
i − Fx∗)fi (9)

xt
i = Xt−1

i + V t
i (10)
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This work uses PSO to find the initial solution and BA to refine the obtained solution. PSO starts k particles. Each particle is a
random group of m test cases. For each particle, the fitness function F is calculated using Eq. [11], where abs is the absolute value:

F =

m∑
i=1

CCIi +

m∑
i=1

FPi +
1

1 + |d−
∑m

i=1 E(ti)|
+

1

1 + |B −
∑m

i=1 C(ti)|
(11)

The particle with the best value of F is taken as the best particle (pbest) in all rounds, and new particles (k) are created with
pbest as the seed. The iteration is repeated either until the maximum iteration is configured or until there is no further movement in
particles. The best solution (m test cases) found by PSO is input to the BA. The BA starts with m test cases found by PSO and does
a bat search by selectively replacing one or more test cases in m and assigning them to it. The fitness function is evaluated for the
bats. BA is stopped when there is no further change in the fitness value of the bat. At the end of bat convergence, an optimal solution
of m test cases with the highest value of F is obtained. The overall algorithmic flow of the proposed solution is given in Figure 2.

Figure 2: Overall algorithmic flow of the proposed solution

3 Results and Discussion

The performance of the proposed solution is evaluated against a dataset of four medium-sized programs: Flex, Grep, gzip, and Sed.
The performance is measured regarding the average percentage of faults detected (APFD), whose value ranges from 0 to 1. The
higher the value of APFD, the higher the faults are detected by the test suite. In addition to APFD, the performance is also measured
in terms of coverage lines, execution time, and resource budget. The performance of the proposed solution is compared against the
fixed-size-candidate-set adaptive random testing (FSCS-ART) technique proposed by Eghbali and Tahvildari [13] and the adaptive
random sequence (ARS) approach proposed by Palma et al. [18]. The APFD is measured for all four medium-sized programs, and
the result for the same is shown in Table 2 and Figure 3. The average APFD in the proposed solution is 3.45% higher compared to
[13] and 7.14% higher compared to [18]. APFD has increased in the proposed solution due to increased coverage and measuring
the cyclomatic complexity of each covered class. While works [18] and [13] made fault estimation only based on lines of code, the
proposed solution estimated it in terms of the complexity of the code covered. More complex is the code; there are more chances of
fault. This was exploited well in the proposed solution, and as a result, APFD increased.
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Table 2: Comparison of APFD%

Programs Proposed FSCS-ART [13] ARS [18]

Flex 0.900 0.880 0.840
Grep 0.890 0.860 0.830
gzip 0.912 0.890 0.840
Sed 0.900 0.880 0.850
Average 0.900 0.870 0.840

Figure 3: Comparison of average APFD

The coverage line was measured in terms of the percentage of total lines covered by the optimal test cases, and the result is
given in Table 3 and Figure 4. The coverage percentage is marginally higher in the proposed solution. It is, on average, 19% higher
than results obtained by Eghbali et al. [13] and 25% higher than that of Palma et al. [18]. The increased coverage in the proposed
solution is due to the maximization of coverage as an important parameter in multi-objective optimization and coverage based on
impact within and across classes or functions.

Table 3: Comparison of coverage%

Programs Proposed FSCS-ART [13] ARS [18]

Flex 2.9 2.11 1.94
Grep 2.7 2.16 1.97
gzip 2.6 2.2 2.0
Sed 2.5 2.1 2.04

Average 2.67 2.14 1.98
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Figure 4: Comparison of average coverage percentage

The execution time of test cases was measured, and the result is given in Table 4 and Figure 5. The average execution time
in the proposed solution is 23.81% lower compared to Eghbali et al. [13] and 42.86% lower compared to Palma et al. work [18].
The execution time has been reduced in the proposed solution due to considering reducing variance to the deadline as an important
optimization parameter, but both works[13] and [18] did not consider time optimization.

Table 4: Comparison of execution time in minutes

Programs Proposed FSCS-ART [13]] ARS [18]

Flex 10.0 12.0 14.0
Grep 9.0 13.0 15.0
gzip 11.0 13.0 15.0
Sed 12.0 14.0 16.0

Average 10.5 13.0 15.0

Figure 5: Comparison of average execution time.
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The total resource cost for the execution of test cases is measured, and the result is given in Table 5 and Figure 6. The average
resource cost in the proposed solution has been reduced by 12.73% compared to [13] and 81.81% compared to [18]. Resource
cost minimization was one of the goals in the proposed solution and was considered a parameter in multi-objective optimization.
Solution [13] tried to reduce resources heuristically, but it was ineffective for the multi-objective optimization used in the proposed
solution.

Table 5: Comparison of resource cost

Programs Proposed FSCS-ART [13] ARS [18]

Flex 1.61 1.72 1.96
Grep 2.10 2.22 4.06
gzip 0.96 1.34 1.52
Sed 1.95 2.16 4.46

Average 1.65 1.86 3.00

Figure 6: Comparison of average resource cost

Commercial software has more than a million lines of code (LOC), and test cases needed for checking the defects or failures
are also huge. Regression testing the entire software for a small patch is resource-intensive, but the leakage of defects is also not
desirable. Thus, effective test case prioritization techniques have been researched, and many works have been proposed.

Chen et al. [14] clustered the test cases based on their code coverage information and selected random test cases. Wang et al.
[16] grouped the test cases using pairwise distance measurements and selected random test cases. Both methods addressed coverage
and fault detection probability in test suite reduction, but they did not consider the execution time and resource cost minimization.
The proposed solution viewed test case prioritization as an optimization problem based on multiple coverage factors, fault detection
probability, resource cost, and execution. The coverage, resource cost, fault detection probability, and execution time in the proposed
solution are far better than Chen et al. [14] and Wang et al. [16].

4 Conclusion

This work proposed a metaheuristics test case prioritization technique for regression testing. The proposed solution selected test
cases based on multiple objectives of maximizing the coverage, maximizing the fault detection probability, minimizing the execution
time to meet the deadline and minimizing the resource cost to meet the test budget. Through performance, the proposed solution
provided a significant increase in APFD and coverage, while ensured lower execution time and resource cost compared to existing
works. Evaluating the performance of the proposed solution against large-size software systems is within the scope of future work.
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