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Abstract

This paper presents a non-invasive blood glucose monitoring system integrated with Internet of Things (IoT)
technology using breath acetone detection. The system utilizes a TGS822 gas sensor to detect acetone levels
in exhaled breath, which are correlated with blood glucose concentration. To enhance accuracy, environmental
parameters such as temperature, humidity, and pressure are measured using DHT11 and BMP180 sensors. Sensor
data are processed using Arduino-based signal acquisition and regression analysis techniques to estimate glucose
levels, which are displayed in real-time on an LCD and transmitted for remote monitoring. Experimental validation
was conducted on 11 subjects, and results demonstrated a strong correlation with standard glucometer readings,
achieving an accuracy of approximately 98%. The proposed system offers a reliable, painless, and cost-effective
alternative for diabetes management.

Keywords: Non-Invasive Monitoring; Blood Glucose Estimation; Breath Acetone; IoT-Based Healthcare; Gas Sensors;
TGS822; Diabetes Management

1. Introduction

Diabetes is a prevalent chronic disease that affects approximately 463 million people worldwide, with projections
indicating that this number could increase to 700 million by 2045 [1]. The condition results from the body’s inability
to regulate blood glucose levels, which, if left unmanaged, can lead to serious health complications [2, 3]. Regular
monitoring of blood glucose levels is essential for people with diabetes to minimize the risk of adverse outcomes and
ensure effective disease management [4, 5]. Diabetes generally presents in two main forms: Type 1 and Type 2 [6]. Type
1 diabetes is an autoimmune condition characterized by minimal or absent insulin production due to the immune system
attacking insulin-producing pancreatic cells. This form typically manifests in childhood or adolescence and requires
frequent blood glucose monitoring - usually four to ten times per day - and daily insulin injections [7]. In contrast, Type
2 diabetes is a metabolic disorder marked by insulin resistance or insufficient insulin production. It affects primarily
adults and is often associated with lifestyle factors. Although individuals with Type 2 diabetes typically monitor
their blood glucose levels one to four times a day, regular checks remain essential for effective treatment [8]. Current
glucose monitoring technologies include finger-prick tests and continuous glucose monitors (CGMs). Finger-prick testing
involves drawing a small blood sample multiple times a day, which can be uncomfortable and inconvenient, leading to
poor compliance. CGMs, which use a sensor placed under the skin, provide more consistent readings but may also
cause discomfort, require frequent replacement, and necessitate periodic calibration [9, 10].

These challenges can diminish the effectiveness of diabetes care. Thus, in the present work, a non-invasive glucose
monitoring system that detects acetone in breath is proposed, integrated with Internet of Things (IoT) technology to
address existing limitations. Acetone, a byproduct of fat metabolism, correlates with blood glucose levels and can be
measured in exhaled breath [11]. This system offers a painless and continuous alternative to traditional finger-prick
tests, enhancing comfort and convenience. It provides real-time data and alerts, enabling immediate diet, exercise,
or medication adjustments. Additionally, IoT integration allows healthcare providers to remotely monitor patients’
glucose levels, facilitating more informed and responsive care [12].
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2. Related Works

Malinin et al. [13] developed and evaluated a non-invasive blood glucose monitor based on bio-impedance. The study
explores the basic principles of bio-impedance, its application in glucose monitoring, and the influence of frequency on
impedance measurements. The average discrepancy between invasive and non-invasive readings was less than 20% for
both static and dynamic testing across Type 1 and Type 2 diabetic patients, as well as healthy individuals. The system
schematic includes a data processing module incorporating neural network (NN) techniques and filtering and data
acquisition components. Signals from the bio-impedance sensor are processed using the AD5933 signal conditioner and
an amplifier. The microcontroller LPC1768 interfaces with the AD5933 via the I2C bus to display readings on an LCD
and store data in a database. Bold et al. [14] proposed a wide-band antenna for non-invasive blood glucose monitoring.
The study emphasizes using electromagnetic waves, leveraging the correlation between blood glucose levels and changes
in permittivity and conductivity, which affect the antenna’s resonant frequency. The proposed broadband antenna
operates between 500 MHz and 6 GHz, achieving a return loss as low as —33 dB and less than —10 dB across the
spectrum. It demonstrates a radiation pattern with a gain of 2.21 dB at the 1.6 GHz resonance frequency. Thati et al.
[15] introduced a non-invasive blood glucose screening method based on breath acetone analysis. The study presents a
novel approach that estimates blood glucose concentration by quantifying acetone levels in exhaled breath using a
semiconductor metal oxide sensor. A correlation between blood glucose levels and exhaled acetone was established.
Environmental factors such as temperature, pressure, and humidity were also considered. Feature extraction was
performed using waveform data from the sensor, and an artificial neural network (ANN) was trained and evaluated
with patient data ranging from 80 mg/dL to 180 mg/dL. The method achieved a glucose estimation error within
+7.5 mg/dL.

Gayathri et al. [16] investigated a non-invasive blood glucose monitoring approach leveraging near-infrared (NIR)
spectroscopy in conjunction with photoplethysmography (PPG). Their system employed linear and polynomial regression
models to estimate glucose concentration based on the scattering characteristics of glucose molecules. An MSP430G2553
microcontroller handled the signal processing, and MATLAB was used for data analysis to establish a correlation
between photoplethysmographic signals and glucose levels. In a complementary study, Manurung et al. [17] proposed
an Internet of Things (IoT)-enabled non-invasive glucose monitoring system based on NIR, spectroscopy. Their work
integrated a sensor setup comprising an LED-photodiode pair operating at 940 nm, with signal preprocessing conducted
via amplification and filtering. Notably, their approach utilized a mobile application embedded with a sequential
neural network model developed in Keras and TensorFlow Lite, achieving a mean absolute error of 5.855 mg/dL. The
system also featured cloud-based data storage through Firestore, enabling real-time health tracking. Ali et al. [18]
introduced a non-invasive blood glucose monitoring (BGM) technique utilizing visible red laser light’s transmittance
and refractive properties at 650 nm. Unlike conventional near-infrared (NIR)-based systems, their RL-BGM device
demonstrated superior tissue penetration, higher sensitivity to glucose-induced refractive index changes, and a faster
response time of 7-10 s. The system was validated through in-vitro and in-vivo experiments, including testing on 45
human subjects. Results indicated a linear measurement range up to 450 mg/dL with an overall accuracy of 90-92%,
as confirmed via Clarke Error Grid (CEG) analysis. The low-cost, compact hardware design, with minimal electronic
components, underscores its potential for practical deployment in point-of-care applications. More recently, Sharma et
al. [19] proposed a highly sensitive, non-invasive biosensing platform for glucose detection in saliva using solid-state
thin-film transistors (TFTs). The device, fabricated using a tri-channel InyO3/ZnO heterojunction, incorporates
surface-immobilized glucose oxidase to enable selective glucose detection via changes in charge density at the transistor
channel. The sensor demonstrated a wide detection range from 500 nM to 20 mM and achieved an exceptionally low
detection limit of 365 pM in artificial saliva and 416 nM in real saliva, with response times under 60 seconds. The
BioTFTs exhibited good operational stability and specificity, making them suitable for rapid, point-of-care diagnostic
applications.

The reviewed literature demonstrates various non-invasive glucose monitoring techniques, including bio-impedance
sensing, electromagnetic coupling, laser and NIR-based spectroscopy, and biochemical sensing through saliva and
breath acetone. Many of these approaches incorporate advanced signal processing and machine learning algorithms,
with several studies leveraging IoT integration for real-time tracking and remote accessibility. While each method
presents unique advantages, challenges such as complexity, selectivity, calibration needs and user comfort persist.
The present work builds upon these efforts by integrating breath acetone detection—a proven, pain-free biomarker
approach—with IoT-enabled data transmission. This alignment addresses current limitations and enhances usability,
real-time responsiveness, and remote monitoring capabilities in diabetes management.

3. Methodology

The proposed non-invasive glucose monitoring system utilizes three sensors to detect five key parameters that aid in
estimating breath acetone levels: barometric pressure using the BMP180 sensor, temperature and humidity using the
DHT11 sensor, and acetone concentration through the Figaro TGS822 sensor. These sensors are integrated with an
Arduino Uno R3 microcontroller and housed within a closed breath analysis chamber to ensure consistent environmental
measurements.
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The BMP180 and DHT11 sensors are crucial in estimating breath volume and flow rate, which can vary significantly
between individuals. Given that exhaled breath is inherently warm and humid, it is essential to compensate for the
effects of temperature, humidity, and pressure when interpreting acetone sensor readings. Environmental conditions
significantly influence the sensitivity of the gas sensor (TGS822); thus, these parameters are measured and incorporated
into the analysis for each individual. Figure 1 illustrates the overall block diagram of the glucose detection system.

TGS 822

GSM MODULE

DHT 11 ARDUINO

BMP 180

g

Figure 1: Block diagram of the proposed non-invasive glucose monitoring system

The DHT11 sensor operates at 5V DC and transmits 40 bits of data to the microcontroller: 16 bits for relative
humidity (8 integer and 8 decimal), 16 bits for temperature (8 integer and 8 decimal), and an 8-bit checksum. The
Arduino Uno processes this data to obtain real-time temperature and humidity readings used in sensor calibration and
environmental compensation.

3.1. Measurement of the glucose level

As shown in Figure 2, the hardware setup includes the Arduino Uno R3 connected to the DHT11, BMP180, and
TGS822 sensors. Each sensor is tested under ambient air conditions, and output values are recorded and processed
using Arduino-based firmware.

Figure 2: Hardware implementation of the glucose monitoring prototype

3.2. Sensor calibration

The TGS822 gas sensor is calibrated using a standard gas concentration of 300 ppm ethanol. The baseline resistance
Ry at this concentration is calculated using the equation (1):

Vo -V,
Rg = (&£ "RL) R, (1)
VrL

Here, Rgs is the sensor resistance in a target gas, V¢ is the circuit voltage, Vg is the load voltage, and Ry is
the load resistance. Once Ry is established, the sensor response is measured for different concentrations, and the
corresponding Rg values are used for further analysis.

3.3. Regression analysis

The TGS822 sensor responds to the presence of acetone by decreasing its resistance. This change is influenced by
environmental parameters such as temperature, humidity, and gas concentration. The acetone concentration in parts
per million (ppm) can be calculated using power regression, given by equation (2):

ppm = <a~ %ﬁ)b (2)
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where a and b are empirically derived constants based on the sensor’s characteristic curve. The final glucose
concentration in mg/dL is computed by mapping the acetone ppm values through linear regression models. This result
is displayed in real-time on a Liquid Crystal Display (LCD) attached to the system. IoT integration (via GSM or Wi-Fi
module) allows for optional cloud-based storage and remote patient data monitoring.

4. Results and Discussion

4.1. Environmental Conditions Monitoring

Figure 3 and Figure 4 show sample outputs from the DHT11 and BMP180 sensors during breath input. The
DHT11 consistently recorded a temperature of 28-34°C and relative humidity of 68-87%, while the BMP180 recorded
atmospheric pressure around 100860-100865 Pa. These parameters compensated for environmental variations affecting
the TGS822 gas sensor.

Sample DHT11...
Sample OK: 28 *C, 68 H

Sample DHT11...
Sample OK: 28 *C, 68 H

Sample DHT11...
Sample OK: 28 *C, 68 H

Sample DHT11...
Sample OK: 28 *C, 68 H

Sample DHT11...
Sample OK: 28 *C, 68 H

Sample DHT11...
Sample OK: 28 *C, 68 H

Figure 3: DHT11 sensor output showing temperature and humidity readings

Temperature = 28.30 *C
Pressure = 101743 Pa
2989.73 1n Hg

Temperature = 28.30 *C
Pressure = 101240 Pa
2989.56 1n Hg

Temperature = 28.30 *C
Pressure = 101234 Pa
2989.64 1in Hg

Temperature = 28.30 *C

Pressure = 101235 Pa
2989.59 in Hg

Figure 4: BMP180 sensor output displaying temperature and pressure
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4.2. Voltage and Resistance-Based Gas Discrimination

Sensor responses to acetone, ethanol, and benzene were studied across a concentration range of 1-7 ppm. Tables 1
and 2 provide the corresponding voltage and resistance values. Acetone consistently produced the lowest voltage and
resistance for a given concentration, indicating higher sensitivity of the T(GS822 sensor to acetone.

Table 1: Sensor output voltage (V) at varying gas concentrations

Concentration (ppm) Acetone Ethanol Benzene
1 0.09 0.16 0.27
2 0.10 0.18 0.28
3 0.11 0.20 0.29
4 0.12 0.21 0.30
5 0.13 0.22 0.33
6 0.14 0.24 0.34
7 0.145 0.25 0.36

Table 2: Sensor resistance () at varying gas concentrations

Concentration (ppm) Acetone Ethanol Benzene
1 5713.10 6623.21 7845.44
2 5002.04 6180.11 7221.76
3 4661.90 5247.43 6454.65
4 4066.67 5111.98 6012.32
5 3651.40 4780.31 5538.55
6 3118.54 4065.89 5278.12
7 2832.33 3799.90 4283.33
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Figure 5: Voltage vs. concentration for different gases

Figure 6: Resistance vs. concentration for different gases

From the figures 5 and 6, it is seen that acetone shows a stronger sensor response at lower concentrations than
other gases, confirming that the TGS822 sensor is most suitable for breath acetone detection in this context.

4.3. Real-Time Breath Analysis Output

Real-time outputs from the system show breath acetone levels and the corresponding estimated blood glucose levels
(BGL). The processed results are displayed on an LCD. Fig. 7-9 illustrate the readings for non-diabetic and diabetic

individuals, respectively.
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Figure 7: Breath acetone and estimated BGL for a non-diabetic individual

Figure 9: System vs. Accu-Chek reading for elevated
Figure 8: System vs. Accu-Chek reading for normal BGL BGL

4.4. Volunteer Data and Validation

The system was tested on 11 volunteers, including both diabetic (D1-D4) and non-diabetic (N1-N6) individuals.
Table 3 presents the recorded breath acetone levels, system-predicted blood glucose levels, and reference values from
Accu-Chek.

Table 3: Comparison of breath acetone and BGL with Accu-Chek values

Volunteer Acetone (ppm) BGL (mg/dL) Accu-Chek (mg/dL)

D1 1.73 164.66 165
D2 1.42 138.35 137
D3 1.19 117.87 116
D4 2.18 199.5 200
D4 1.02 110.73 110
N1 0.96 103.12 104
N2 0.90 100.47 101
N3 0.88 96.4 95
N4 0.86 92.16 91
N5 0.85 87.34 88
N6 0.80 84.33 83
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Figure 10: correlation between breath acetone and blood glucose levels

As illustrated in Fig. 10, a clear positive correlation is observed between breath acetone concentration and blood
glucose levels. For healthy individuals, breath acetone levels remain below 1.20 ppm, corresponding to BGL values
within the normal range (80-110 mg/dL). Diabetic individuals exhibit higher acetone values exceeding 1.2 ppm,
corresponding to elevated glucose levels above 120 mg/dL. The system achieved an average accuracy of approximately
98%, with an error range of 1.6-2% when compared against standard glucometer readings. These results confirm the
potential of the proposed non-invasive, breath-based system as a reliable alternative for routine glucose monitoring.

5. Conclusions

This study presents a non-invasive, loT-integrated glucose monitoring system using a Figaro TGS822 gas sensor based
on breath acetone detection. The system also incorporates DHT11 and BMP180 sensors for environmental parameters
such as temperature, humidity, and pressure, influencing gas sensor behavior. A correlation between breath acetone
concentration and blood glucose level was established through regression analysis. The prototype displays glucose levels
in real-time and transmits data for remote monitoring. Experimental results from 11 volunteers, including diabetic
and non-diabetic subjects, confirmed the system’s accuracy when validated against standard glucometer readings.
The system achieved an accuracy rate of approximately 98%, with only minor deviations. These findings validate
the feasibility and reliability of breath-based glucose monitoring as a non-invasive, low-cost alternative for diabetes
management. Future work may explore miniaturization, integration with mobile apps, and long-term clinical validation
to enable widespread adoption in personalized healthcare.

Acknowledgment

The authors would like to thank the Department of Biomedical Engineering, Jerusalem College of Engineering, Chennai,
for providing the necessary resources and support for the successful completion of this research work.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Funding Declaration

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

17



Author Contributions

V. Mythily: Conceptualization, Supervision, Review and Editing; Bhuvaneshwari GT: Methodology, Investigation,
Writing — Original Draft, Data Curation; Madumitha S: Software, Validation, Visualization; Divyashree S: Hardware
Implementation, Testing, Formal Analysis.

References

1]
2]

13

5]

19]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

A. Agarwal and V. V. Gossain, “Diabetes in the elderly,” Drugs in Diabetes, vol. 183, 2021.

M. Lotfy, J. Adeghate, H. Kalasz, J. Singh, and E. Adeghate, “Chronic complications of diabetes mellitus: a mini
review,” Current diabetes reviews, vol. 13, no. 1, pp. 3—10, 2017.

A. Yachmaneni Jr, S. Jajoo, C. Mahakalkar, S. Kshirsagar, and S. Dhole, “A comprehensive review of the vascular
consequences of diabetes in the lower extremities: current approaches to management and evaluation of clinical
outcomes,” Cureus, vol. 15, no. 10, 2023.

G. Freckmann, S. Pleus, M. Grady, S. Setford, and B. Levy, “Measures of accuracy for continuous glucose monitoring
and blood glucose monitoring devices,” Journal of diabetes science and technology, vol. 13, no. 3, pp. 575583,
2019.

G. Cappon, M. Vettoretti, G. Sparacino, and A. Facchinetti, “Continuous glucose monitoring sensors for diabetes
management: a review of technologies and applications,” Diabetes €& metabolism journal, vol. 43, no. 4, p. 383,
2019.

M. J. Redondo, W. A. Hagopian, R. Oram, A. K. Steck, K. Vehik, M. Weedon, A. Balasubramanyam, and
D. Dabelea, “The clinical consequences of heterogeneity within and between different diabetes types,” Diabetologia,
vol. 63, pp. 2040-2048, 2020.

J. M. Norris, R. K. Johnson, and L. C. Stene, “Type 1 diabetes—early life origins and changing epidemiology,”
The lancet Diabetes & endocrinology, vol. 8, no. 3, pp. 226-238, 2020.

E. Ahmad, S. Lim, R. Lamptey, D. R. Webb, and M. J. Davies, “Type 2 diabetes,” The Lancet, vol. 400, no. 10365,
pp. 1803-1820, 2022.

I. P. Smith, C. L. Whichello, J. Veldwijk, M. P. Rutten-van Moélken, C. G. Groothuis-Oudshoorn, R. C. Vos, E. W.
de Bekker-Grob, and G. A. De Wit, “Diabetes patient preferences for glucose-monitoring technologies: results
from a discrete choice experiment in poland and the netherlands,” BM.J Open Diabetes Research and Care, vol. 11,
no. 1, p. e003025, 2023.

O. Didyuk, N. Econom, A. Guardia, K. Livingston, and U. Klueh, “Continuous glucose monitoring devices: past,
present, and future focus on the history and evolution of technological innovation,” Journal of diabetes science and
technology, vol. 15, no. 3, pp. 676-683, 2021.

A. T. Giintner, I. C. Weber, S. Schon, S. E. Pratsinis, and P. A. Gerber, “Monitoring rapid metabolic changes in
health and type-1 diabetes with breath acetone sensors,” Sensors and Actuators B: Chemical, vol. 367, p. 132182,
2022.

V. R. Boppana, “Role of iot in remote patient monitoring systems,” Advances in Computer Sciences, vol. 2, no. 1,
2019.

L. Malinin, “Development of a non-invasive blood glucose monitor based on impedance measurements,” International
Journal of Biomedical Engineering and Technology, vol. 8, no. 1, pp. 60-81, 2012.

J. Bold, Y. Cao, J. Louma, A. Rosen, and D. Sinkiewicz, “Non-invasive blood glucose monitor,” 2013.

A. Thati, A. Biswas, S. R. Chowdhury, and T. K. Sau, “Breath acetone-based non-invasive detection of blood
glucose levels,” International journal on smart sensing and intelligent systems, vol. 8, no. 2, p. 1244, 2015.

B. Gayathri, K. Sruthi, and K. U. Menon, “Non-invasive blood glucose monitoring using near infrared spectroscopy,”
in 2017 international conference on communication and signal processing (ICCSP), pp. 1139-1142, IEEE, 2017.

B. E. Manurung, H. R. Munggaran, G. F. Ramadhan, and A. P. Koesoema, “Non-invasive blood glucose moni-
toring using near-infrared spectroscopy based on internet of things using machine learning,” in 2019 IEEE R10
Humanitarian Technology Conference (R10-HTC)(47129), pp. 5-11, IEEE, 2019.

18



[18] H. Ali, F. Bensaali, and F. Jaber, “Novel approach to non-invasive blood glucose monitoring based on transmittance
and refraction of visible laser light,” IEEE access, vol. 5, pp. 9163-9174, 2017.

[19] A. Sharma, W. S. AlGhamdi, H. Faber, Y.-H. Lin, C.-H. Liu, E.-K. Hsu, W.-Z. Lin, D. Naphade, S. Mandal,
M. Heeney, et al., “Non-invasive, ultrasensitive detection of glucose in saliva using metal oxide transistors,”
Biosensors and Bioelectronics, vol. 237, p. 115448, 2023.

19



	Introduction
	Related Works
	Methodology
	Measurement of the glucose level
	Sensor calibration
	Regression analysis

	Results and Discussion
	Environmental Conditions Monitoring
	Voltage and Resistance-Based Gas Discrimination
	Real-Time Breath Analysis Output
	Volunteer Data and Validation

	Conclusions

