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Abstract

Pneumonia is a respiratory illness characterized by lung inflammation, often caused by pathogens such as viruses, bacteria,
or fungi. Timely detection of pneumonia is crucial for effective treatment. While chest X-rays are commonly used for diagnosis,
manual interpretation can be time-consuming, particularly in areas with limited access to trained radiologists. Currently, deep
learning models have emerged as an efficient method for pneumonia diagnosis. Numerous researchers are dedicated to
enhancing pneumonia diagnostic capabilities through artificial intelligence methods. This study employs a convolutional neural
network (CNN) for pneumonia diagnosis. The dataset used in this study consists of chest X-ray images of healthy individuals
as well as those affected by bacterial and viral pneumonia. In this study, a CNN model is implemented using an imbalanced
chest X-ray dataset with a weighted cross-entropy cost function. The outcome of the developed CNN model shows an accuracy
of 75.84%, a precision of 83.16%, a recall of 68.37%, and an F1 score of 68.97% on the test dataset. Further tuning of the
model’s hyperparameters is necessary to improve performance metrics.
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1 Introduction

According to the World Health Organization (WHO), pneumonia is the single largest infectious cause of death in children
worldwide. Therefore, an effective and immediate pneumonia detection mechanism is essential. Given that X-ray images serve
as the primary diagnostic tool for pneumonia, the development of an automatic detection mechanism using X-ray images is
important. Such an advancement would significantly enhance treatment efficacy and ultimately save countless lives that might
otherwise be lost due to delays or errors in disease detection. Transmission of pneumonia typically occurs through inhalation of
contaminated air, particularly in unhygienic or polluted environments. High-risk groups include young children and older adults
above age 60, especially in cases of community-acquired pneumonia. The incidence of pneumonia varies by country, age,
and gender, and is higher in male individuals aged above 65 years [1]. With the development of imaging modalities like X-ray
and CT, examinations related to diagnosing different respiratory diseases can be performed at a much faster rate. Despite the
increased utilization of CT, which has enhanced the early detection of severe clinical manifestations in patients, X-ray remains
the primary choice for clinical screening and imaging follow-up due to its simplicity, speed, and cost-effectiveness. Moreover,
it is the prevailing examination method for chest diseases currently. The manifestations of pneumonia on chest radiographs
typically involve thickening and blurring of early lung markings [2], along with decreased lung transparency.
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Figure 1: Examples of Chest X-Rays in Patients with Pneumonia extracted from the work of [3], which is the dataset used for
this study.

As information and computer technology continue to advance, the use of image digitization and automatic recognition
has become widespread across various sectors. This progress facilitates the extraction of information from images, enabling
radiologists to make rapid and efficient assessments. The X-ray images from the original study of the dataset used in this
paper [3], illustrated in Figure 1, depict three different conditions: a normal chest X-ray (left panel) showing clear lungs without
any abnormal opacification, bacterial pneumonia (middle panel) with focal lobar consolidation in the right upper lobe (white
arrows), and viral pneumonia (right panel) with a more diffuse interstitial pattern in both lungs. The remainder of this paper is
organized as follows: Section 2 provides a review of related works. Section 3 outlines the proposed methodology, including
model architecture and details. In Section 4, the experiments are conducted, and the dataset and software are discussed in
detail. In Section 5, the results are presented, and further, the limitations are discussed. Finally, the conclusion and future
recommendations are presented in Section 6.

2 Related Work

Neural networks have been applied in various domains ranging from transport demand prediction [4] to medical imaging for
disease diagnosis. These models, including Convolutional Neural Networks (CNNs), have proven effective in tasks like classi-
fication, segmentation, and feature extraction. Throughout history, machine learning has been utilized in various applications
within the medical field, particularly in disease diagnosis and prediction tasks. In recent times, a large variety of algorithms
suitable for disease diagnosis and prediction have emerged, covering a wide range of disease conditions, including neurolog-
ical disorders such as Alzheimer’s disease, Parkinson’s disease, dementia, and epilepsy, as well as cardiovascular diseases,
prostate cancer predictions (classifying malignant and benign tumors) [5], and many other common health conditions. The
scope of deep learning is broad, and in recent years, there has been a notable transformation in medical image analysis
due to the emergence of deep learning-based image analysis methods [6, 7]. Deep convolutional neural networks (CNNs),
renowned for their effectiveness in image classification, segmentation, and feature extraction, have played an important role in
advancing automated medical imaging systems. Utilizing deep CNNs for pneumonia detection has exhibited promising results.
Recent research related to the use of deep learning in pneumonia diagnosis, especially since 2020, has focused mainly on
detecting COVID-19-related pneumonia [8]. Many studies, such as [9, 10], have employed transfer learning and deep con-
volutional neural networks (CNNs) for this purpose. Some image classifications, like [11], were performed using the Support
Vector Machine (SVM) algorithm and transfer learning models such as ResNet50, VGG16, and VGG19. Transfer learning
with pre-trained models has increased the accuracy of recent X-ray image classification models. The work of [12] provides a
comprehensive summary of recent models used in pneumonia detection. Several related studies have been conducted using
the chest X-ray dataset employed in this paper. For example, the work of [13] proposes a transfer learning-based convolutional
neural network using the same dataset. This proposed model by [13] achieved a test accuracy of 98.43% and an AUC score of
0.9976. The work of [14] utilizes two pre-trained models, EfficientNetB0 and DenseNet121, achieving an accuracy of 95.19%,
a precision of 98.38%, a recall of 93.84%, and an F1 score of 96.06% on the test dataset for detecting pneumonia. This model
is trained using a similar X-ray dataset as in this study.

3 Proposed Method

The schematic of the Convolutional Neural Network (CNN) model used in this study for the binary classification of X-ray images
into Normal and Pneumonia classes is shown in Figure 2. As shown in Figure 2, the model contains three convolutional (Conv)
layers used for feature extraction and two fully connected (FC) layers used for classification. In the first Conv layer, there are 64
output nodes, and the activation function used is ReLU. ReLU is applied per pixel and replaces all negative pixel values in the
feature map with zero. The second and third Conv layers produce outputs of 128 and 256 nodes, respectively. The activation
function used throughout the second and third Conv layers is also ReLU. The mathematical formula for the ReLU activation
function is represented in Equation 1:

ReLU(x) = max(0, x) (1)
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Figure 2: The schematic of the CNN architecture used in this study.

Dropout layers are not used in this model, although they can be included as part of future model development. Adding dropout
layers could improve the model by randomly dropping out a percentage of nodes during operation, increasing randomness
and potentially reducing overfitting. However, to keep the model computationally simpler, dropout layers were omitted, and the
number of convolutional layers was limited to three.

4 Experiments

The experimentation process is carried out using PyTorch’s torch library, and the adjusted dataset shown in Table 1 is used
for training, validation, and testing of the model implemented in this study.

Table 1: The original dataset used for this study.

Dataset Number of Images

Train (Normal class) 1341
Train (Pneumonia class) 3875
Validation (Normal class) 8
Validation (Pneumonia class) 8
Test (Normal class) 234
Test (Pneumonia class) 390

Total 5863

Additionally, for performance metric calculations, the scikit-learn library is utilized. The chest X-ray images are resized
to dimensions of 224× 224× 3, normalized to the range [−1, 1], and transformed into tensors. Additional data augmentations
such as cropping and rotations are not applied to maintain computational simplicity, given the limitations in GPU availability.
The X-ray images are processed in batches. The dataset is visualized after the initial pre-processing, and a sample data
visualization of a mini-batch of size 16 is displayed in Figure 3. The CNN architecture described in Figure 2 is utilized for
feature extraction and classification. The loss function employed is weighted cross-entropy, and the optimizers used are
Stochastic Gradient Descent (SGD) and Adam. The weight tensor of the cross-entropy loss used during the training of the
model is calculated as shown in Equation 2:

Weight of a class =
Number of data instances of the class in the training dataset

Total number of data instances in the training dataset
× Number of classes (2)

Accordingly, weights of 1.92 and 0.67 are utilized for the ’Normal’ and ’Pneumonia’ classes, respectively, during the training of
the model. Due to limited GPU availability, extensive hyperparameter tuning could not be performed during this study. However,
some parameter tuning was conducted, and better performance was observed with the hyperparameter combinations shown
in Table 3. The best-performing model was obtained with a learning rate of 0.1, a batch size of 32, and a convolutional kernel
size of 3x3 using the SGD optimizer.

16



Figure 3: Sample chest X-ray images in a mini-batch of size 16 from the training dataset.

4.1 Dataset

The original dataset was downloaded from Kaggle1. The chest X-ray pneumonia dataset contains a total of 5863 X-ray images,
arranged in three folders (train, test, validation), each containing subfolders for two categories: ‘Pneumonia’ and ‘Normal.’ The
X-ray images were selected from retrospective cohorts of pediatric patients aged one to five years from Guangzhou Women
and Children’s Medical Center, Guangzhou. As per the dataset provider, all chest X-ray imaging was performed as part
of patients’ routine clinical care. For quality control, all chest radiographs were initially screened to remove low-quality or
unreadable scans. The diagnoses for the images were graded by two expert physicians before being cleared for training the AI
system, with a third expert reviewing the evaluation set to account for any grading errors. The original dataset is summarized
in Table 1, mentioned earlier. The validation folder contained only a few data instances, so the training and validation datasets
were rearranged into an 80/20 ratio. The adjusted dataset, used for this study, is presented in Table 2.

Table 2: The adjusted dataset used for this study.

Dataset Number of Images

Train (Normal class) 1080
Train (Pneumonia class) 3104
Validation (Normal class) 271
Validation (Pneumonia class) 780
Test (Normal class) 234
Test (Pneumonia class) 390

Total 5859

4.2 Software and Hardware

The Google Colab platform and Jupyter Notebooks serve as the primary tools for editing and executing the Python code related
to this study. The GPU provided by Google Colab is utilized for model execution, and as a result, the model’s hyperparameters
are kept computationally simple to accommodate the available resources. Despite these constraints, deep learning models
require significant computational resources, particularly for operations like matrix multiplication, which is a core component of
CNNs. As shown in studies on compiler optimization [15], improvements in matrix multiplication efficiency can significantly
enhance neural network performance. However, due to the limited GPU availability in this study, the current model imple-
mentation remains constrained in terms of computational efficiency and the number of convolutional layers. Additionally, the
Miniconda environment installed on a local device is employed for specific editing and visualization tasks, such as data aug-
mentation and result interpretation. Future improvements to the computational setup could further enhance model training,
such as integrating matrix multiplication optimizations or using more advanced hardware configurations.

1https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
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Table 3: The combinations of hyperparameters that displayed better performance on the testing dataset.

Hyperparameter Combinations 1 2 3

Number of Training Iterations 20 20 20
Learning Rate 0.1 0.01 0.1
Weight Decay of Optimizer 0 0 0.1
Optimizer Type SGD SGD Adam
Kernel Size of Conv Layer 3x3 3x3 5x5

5 Results and Discussion

The best performance is observed on the testing dataset at a learning rate of 0.1. The best-performing model is trained using
hyperparameter combination 1, as displayed in Table 3. The relevant code and the saved model can be accessed via footnote2

All the results presented in this section are obtained from the best-performing model. Figure 4 shows the variation in
training and validation accuracy during the training iterations. After 15 epochs, the model starts to slightly overfit the training
data. Hence, the optimal number of training epochs for the model developed in this study lies between 15 and 20 epochs.

Figure 4: Variation of training and validation accuracy for the model at learning rate = 0.1, number of iterations = 20, weight
decay = 0, and optimizer type = SGD.

The performance metrics of the model on the validation and testing datasets are shown in Tables 4 and 5, respectively. The
training and validation accuracies of the model are 97.89% and 96.09%, respectively. The testing accuracy is comparatively
lower at 75.84%. This indicates that the model has not fully captured the characteristics of the dataset yet.

Table 4: Performance of the model on the validation dataset.

Performance Metric Output

Accuracy 96.09%
Precision 95.34%
Recall 93.34%
F1 Score 94.83%

Table 5: Performance of the model on the testing dataset.

Performance Metric Output

Accuracy 75.84%
Precision 83.16%
Recall 68.37%
F1 Score 68.97%

The confusion matrices for the validation and testing datasets are shown in Figures 5 and 6, respectively. The confusion
matrix for the testing dataset shows that the model is biased toward the ’PNEUMONIA’ class, which is the majority class in
the dataset. While the weighted cross-entropy function has managed to address class imbalance during training, the model

2The code and saved model can be requested from the corresponding author.
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still exhibits an effect from this imbalance. This suggests that the weight tensor used could be erroneous and may require
adjustments in future implementations. Additionally, other methods of addressing class imbalance, such as SMOTE or class
balancing, could also be considered in future work.

Figure 5: Confusion matrix for the validation dataset.

Figure 6: Confusion matrix for the testing dataset.

6 Conclusions and Recommendations

The performance metrics indicate that the CNN model developed in this study demonstrates better classification results on the
validation data but fails to exhibit similarly strong performance on the test data. Furthermore, it is evident that the imbalanced
nature of the dataset has impacted the final results, despite the use of a weighted cost function during model training. Due
to limited GPU availability, the CNN model is constrained by the restricted number of convolutional layers, and no additional
data augmentations were applied to the dataset. These factors have also contributed to the relatively low performance of
the CNN model on the test dataset. Therefore, the current model is not suitable for clinical applications at this stage of
training. Further optimization of hyperparameters is expected to improve performance metrics in future iterations. Additionally,
enhancing the model architecture by increasing the number of convolutional layers and incorporating dropout layers could
potentially yield better results. Exploring appropriate data augmentations is another possibility for future improvements. A
significant enhancement to the model’s performance can be achieved through transfer learning, using pre-trained models such
as VGG19, ResNet50, or Inceptionv3. By fine-tuning these models for the specific task of pneumonia detection, the network
can leverage features learned from vast datasets and adapt them to the current dataset. This approach not only enhances
classification accuracy but also reduces the computational burden and training time required. Hence, the use of transfer
learning presents a promising avenue for future improvements to the CNN models in this study.
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